Смекни!
smekni.com

Экономико-математические модели задач о смесях на примере СПК "Родина" (стр. 5 из 6)

Сложное финансовое положение предприятия обусловлено прежде всего тем, что денежная выручка от реализации продукции не обеспечивает покрытие затрат на ее производство и не позволяет своевременно погасить кредиторскую задолженность и кредиты банка.

Оплата труда.

В ПСК «Родина» тарификация работников производится на основе действующего ЕТКС по профессиям рабочих и работ, а также квалификационного справочника должностей руководителей, специалистов и служащих с учетом положений, инструкций и аттестаций работников.

На предприятии применяется сдельно-премиальная система оплаты труда. Рабочему кроме заработка по прямым сдельным расценкам, выплачивается премия за выполнение и перевыполнение установленных показателей. Премии определяются за фактически отработанное время на основании сдельного заработка.

Оплата труда руководителей, специалистов и других работников, относящихся к служащим, производится по повременной системе. Порядок исчисления заработка такой же, так и для рабочих-повременщиков, но устанавливается оклад согласно штатному расписанию. Должностной оклад формируется на основе тарифной ставки 1 разряда, тарифного разряда и коэффициента, а также установленных надбавок.

3.3 Постановка и решение собственно задачи о смесях на примере ПСК «Родина»

Данная задача возникает при составлении наиболее экономного (т.е. наиболее дешевого) рациона питания животных, удовлетворяющего определенным медицинским требованиям.

У кооператива есть возможность произвести или купить следующие корма для кормления стада коров:

1) сено по цене 62 рубля за килограмм;

2) сенаж - по 35 рублей;

3) силос - по 34 рубля;

4) корнеплоды - по 45 рублей;

5) комбикорм - по 250 рублей;

6) отруби кукурузные – по 180 рублей

Из зоотехнических справочников известно, что одной корове массой в среднем 500 кг и суточным удоем молока равным 10 кг в сутки необходимо дать не менее 10 кг кормовых единиц, 940 г перевариваемого протеина (белка) и 66 г кальция, 47 г фосфора, 440 мг каротина. Кроме того, в рационе коров должно содержаться около 1/3 сочных кормов и общее количество кормов в сутки на одну корову не должно превышать 40 кг.

Мы знаем стоимость (себестоимость) килограмма каждого корма, поэтому можем определить такой рацион кормления коров, при котором животное получило бы все необходимые ей вещества в нужном количестве и при этом стоимость рациона была бы минимальной

Для обеспечения разнообразия кормления введем ограничение по содержанию отдельных групп кормов в рационе:

1. Сочные корма (силос, корнеплоды) рекомендуется включать в рационы коров в размере 60-65% (1\3) от их общей питательности;

Данные по видам кормов, используемых в хозяйстве, их себестоимости и содержанию в них питательных веществ приведены в таблице 1 [Приложение 1.]

Построение экономико-математической модели.

Введем следующие обозначения:

xi- количество кормов i-гo вида в суточном рационе.

Сi-- стоимость (себестоимость) единицы i-гo корма;

aij— содержание j-гo вещества в единице i-гo корма;

Yj - необходимое содержание j-гo вещества в суточном рационе животного;

Р — общая суточная масса кормов;

IС — индексы подмножества сочных кормов в рационе;

К — коэффициент, определяющий содержание сочных кормов в суточном рационе (0 < К < 1).[9. c 73]

Таким образом, необходимо определить, сколько килограмм j-того корма необходимо взять, чтобы минимизировать стоимость рациона и в то же время удовлетворить потребность в питательных веществах.

Модель задачи в общем виде выглядит следующим образом:

(2.1)

при ограничениях:

Совокупное количество i-того питательного вещества, содержащееся во всех используемых согласно рациону кормах, равно:

(2.2)

ограничения на общую массу кормов:

(2.3)

ограничение на необходимое количество кормов:

(2.4)

xj ≥0 (2.5)

Тогда получаем следующую экономико-математическую модель задачи:

Найти оптимальное количество кормов

X1 + X2 + X3 + X4 + X5 + X6 ≥ 0, (2.6)

Тогда целевая функция может быть записана так:

(2.7)

Ограничения по содержанию необходимых веществ [Приложение 2, табл. 1]:

По кормовым единицам:

0.5X1 + 0.17X2 +0.3X3 +0.14X4 + 0.96X5 + 0.89X6 >= 10 (2.8)

По перевариваемому протеину:

79X1 + 18X2 +29X3 +9.7X4 + 157X5 + 59X6 >= 940 (2.9)

По кальцию:

13X1 + 1.7X2 +3.8X3 +0.4X4 + 5.3X5 + 0.5X6 >= 66 (2.10)

По фосфору:

3.4X1 + 0.6X2 + X3 +0.4X4 + 8.7X5 + 4X6 >= 47 (2.11)

По каротину:

30X1 +15X2 + 20X3 >= 440 (2.12)

Легко запишется ограничение на общее количество кормов в сутки:

X1 + X2 + X3 + X4 + X5 + X6<=40 (2.13)

Ограничение по сочным кормам; к которым относится силос (х2) и корнеплоды (х4):


X2 + X4=1/3(X1 + X2 + X3 + X4 + X5 + X6) (2.14)

И обычное ограничение для задач распределения:

xj ≥0 (2.15)

Таким образом, выше была построена экономико-математическая модель для задачи о рационе, состоящая из целевой, минимизирующей затраты, функции и 16 ограничений

Решение задачи.

Данную задачу наиболее рационально решать прямым симплекс-методом, т.к. целевая функция минимизируется и в модели присутствуют ограничения со знаком ≥,

,=.

Сначала приведем систему ограничений к каноническому виду. Строим первую симплексную таблицу (Приложение 2, табл. 4 ). Затем:

1. Выбираем max по абсолютной величине из положительных элемент Z-строки, получаем ключевой столбец.

2. Находим min отношение свободных членов к положительным элементам ключевого столбца:

, (2.16)

получаем ключевую строку, и на пересечении - ключевой элемент.

Соответствующую ключевому элементу переменную вводим в состав базисных и строим новую симплексную таблицу

3. когда все отрицательные элементы уйдут, получим допустимое решение.

Так как процесс нахождения решения для данной модели является довольно трудоемким, воспользуемся инструментом Поиск решения MSExcel .

Вводим в виде столбца произвольные значения переменных х1, х2…хп, удовлетворяющих всей системе ограничений.

1. В блок ячеек, размерностью n´m (где n - количество переменных х, m- количество ограничений при целевой функции) вводятся коэффициенты при переменных х в ограничениях.

2. В свободную строку вводятся коэффициенты при переменных целевой функции.

3. В виде столбца вводят формулы левых частей ограничений, используя адреса переменных из пункта 1 и значения коэффициентов п. 2. В соседний столбец вносятся правые части ограничений.

4. Поставив знак “=” в свободную ячейку, вводится формула целевой функции Z через адреса коэффициентов (п. 3) и адреса переменных (п.1).

Решение поставленной задачи выполняется следующим образом:

1.Выполняется команда СЕРВИС®ПОИСК РЕШЕНИЯ. В поле Установить целевую ячейку вводится ссылка на ячейку с целевой функцией (п. 4).

2.В группе Равной устанавливается соответствующая опция. В поле Изменить ячейки вводится диапазон ячеек с произвольными значениями переменных (п.1).

3. Нажимается кнопка Добавить для ввода ограничений. В окне «Добавление ограничения» в поле Ссылка на ячейку вводится ссылка на ячейку, содержащую формулу левой части текущего ограничения, выбирается в средней части поля нужное ограничение. В правую часть поля вводится значение правой части ограничения (п.4).

4. Щелкаем кнопкой Выполнить, чтобы произвести поиск решения. Когда решение будет найдено, появится окно «Результаты поиска решения». Устанавливаем в нем опцию Сохранить найденное решение. Для представления результатов поиска решения в форме отчета, указываем Тип отчета, например, выбрав опцию Результаты.

Получим следующий рацион кормления для коровы:

· сено – 17,1кг;

· силос кукурузный –8,547кг;

· общее количество кормовых единиц – 10.

Общая стоимость данного рациона составила 1350 руб.

В данной главе было проанализировано применение задачи о смесях на сельскохозяйственном предприятии – СПК «Родина».

Целью решения поставленной задачи было получение наиболее дешевого рациона кормления животных с удовлетворением потребности в необходимых питательных веществах. Задача была решена с помощью средства Поиск решения MSExсel, был получен наиболее дешевый рацион (стоимость составила рубля). Как видно, в данном рационе соблюдены все ограничения: и по содержанию питательных веществ, и по разнообразию кормов. Была получена минимальная по стоимости смесь кормов.


Заключение

Сельское хозяйство является благоприятной сферой использования экономико-математических методов и электронных вычислительных машин. Так, посредством применения методов линейного программирования можно установить рациональное сочетание отраслей в хозяйстве; определить наилучшую структуру кормовых культур и оптимальные рационы кормления скота; осуществлять оптимальное планирование капиталовложений.[4. c.14]

При организации кормления молочного скота па крупных фермах в колхозах и совхозах в настоящее время признано необходимым нормировать кормовые рационы корон но энергетическим кормовым единицам, сухому веществу, перевариваемому протеину, кальцию, фосфору, магнию, сере, калию, натрию, меди, цинку. В приусадебных и крестьянских хозяйствах на фермах, на которых содержится обычно не более 100 коров, очень трудно осуществить контроль за таким большим числом показателей. Поэтому здесь можно ограничиться нормированием рационов, по семи основным показателям — кормовым единицам, перевариваемому протеину, кальцию, фосфору. Необходимо только более строго соблюдать рекомендуемую структуру рационов по соотношению грубых, сочных и концентрированных кормов.