Смекни!
smekni.com

Математичні моделі задач лінійного програмування (стр. 2 из 3)

Визначивши обернену матрицю А-1 через алгебраїчне доповнення, отримаємо:

Як видно із останнього плану симплексної таблиці, обернена матриця A-1 розміщена у стовбцях додаткових змінних.

Тоді Y = C*A-1 =

Запишемо оптимальний план двоїстої задачі:

y1 = 3

y2 = 0

y3 = 0

Z(Y) = 6*3+-2*0+35*0 = 18


Завдання 3

Розв’язати транспортну задачу.

2 4 5 8 6 180
7 3 6 4 5 300
8 5 6 5 3 230
110 140 220 190 120

Розв’язок

Побудова математичної моделі. Нехай xij — кількість продукції, що перевозиться з і-го пункту виробництва до j-го споживача

. Оскільки
, то задачу треба закрити, тобто збалансувати (зрівняти) поставки й потреби:

У нашому випадку робиться це введенням фіктивного постачальника, оскільки

З уведенням фіктивного постачальника в транспортній таблиці додатково заявляється n робочих клітинок.

Ціни, додатковим клітинкам, щоб фіктивний рядок був нейтральним щодо оптимального вибору планових перевезень, призначаються усі рівні нулю.

Занесемо вихідні дані у таблицю.

В1 В2 В3 В4 В5 Запаси
А1 2 4 5 8 6 180
А2 7 3 6 4 5 300
А3 8 5 6 5 3 230
А4 0 0 0 0 0 70
Потреби 110 140 220 190 120

Забезпечивши закритість розв'язуваної задачі, розпочинаємо будувати математичну модель даної задачі:

Економічний зміст записаних обмежень полягає в тому, що весь вантаж потрібно перевезти по пунктах повністю.

Аналогічні обмеження можна записати відносно замовників: вантаж, що може надходити до споживача від чотирьох баз, має повністю задовольняти його попит. Математично це записується так:

Загальні витрати, пов’язані з транспортуванням продукції, визначаються як сума добутків обсягів перевезеної продукції на вартості транспортування од. продукції до відповідного замовника і за умовою задачі мають бути мінімальними. Тому формально це можна записати так:

minZ=2x11+4x12+5x13+86x14+6x15+7x21+3x22+6x23+4x24+5x25+8x31+5x32+6x33+5x34+ +3x35+0x41+0x42+0x43+0x44+0x45.

Загалом математична модель сформульованої задачі має вигляд:

minZ=2x11+4x12+5x13+86x14+6x15+7x21+3x22+6x23+4x24+5x25+8x31+5x32+6x33+5x34+ +3x35+0x41+0x42+0x43+0x44+0x45.

за умов:

Запишемо умови задачі у вигляді транспортної таблиці та складемо її перший опорний план у цій таблиці методом «північно-західного кута».

Ai Bj ui
b1 = 110 b2 = 140 b3 = 220 b4=190 b5=120
а1 = 180 2110 470 5 8 6 u1 = 0
а2 = 300 7 370 6[-]220 4[+]10 5 u2 = -1
а3 = 230 8 5 6 5[-]180 3[+]50 u3 = 0
а4 = 70 0 0 0[+] 0 0[-]70 u4 = -3
vj v1 =2 v2 =4 v3 =7 v4 =5 v5 =3

В результаті отримано перший опорний план, який є допустимим, оскільки всі вантажі з баз вивезені, потреба магазинів задоволена, а план відповідає системі обмежень транспортної задачі.

Підрахуємо число зайнятих клітин таблиці, їх 8, а має бути m+n-1=8. Отже, опорний план є не виродженим.

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0

u1=0, u2=-1, u3=0, u4=-3, v1=2, v2=4, v3=7 v4=5, v5=3

Ці значення потенціалів першого опорного плану записуємо у транспортну таблицю.

Потім згідно з алгоритмом методу потенціалів перевіряємо виконання другої умови оптимальності ui + vj ≤ cij (для порожніх клітинок таблиці).

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi > cij

(1;3): 0 + 7 > 5

(3;3): 0 + 7 > 6

(4;2): -3 + 4 > 0

(4;3): -3 + 7 > 0

(4;4): -3 + 5 > 0

Тому від нього необхідно перейти до другого плану, змінивши співвідношення заповнених і порожніх клітинок таблиці. Вибираємо максимальну оцінку вільної клітини (А4B3): 0. Для цього в перспективну клітку (4;3) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

Тепер необхідно перемістити продукцію в межах побудованого циклу.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (4;5) = 70.

Додаємо 70 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 70 з хij, що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Для цього у порожню клітинку А4B3 переносимо менше з чисел хij, які розміщені в клітинках зі знаком «–».

Одночасно це саме число хij додаємо до відповідних чисел, що розміщені в клітинках зі знаком «+», та віднімаємо від чисел, що розміщені в клітинках, позначених знаком «–».

Усі інші заповнені клітинки першої таблиці, які не входили до циклу, переписуємо у другу таблицю без змін.

Кількість заповнених клітинок у новій таблиці також має відповідати умові невиродженості плану, тобто дорівнювати (n + m – 1).

Отже, другий опорний план транспортної задачі матиме такий вигляд

Ai Bj ui
b1 = 110 b2 = 140 b3 = 220 b4=190 b5=120
а1 = 180 2110 4[-]70 5[+] 8 6 u1 = 0
а2 = 300 7 3[+]70 6[-]150 480 5 u2 = -1
а3 = 230 8 5 6 5110 3120 u3 = 0
а4 = 70 0 0 070 0 0 u4 = -7
vj v1 =2 v2 =4 v3 =7 v4 =5 v5 =3

Перевіримо оптимальність опорного плану.Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi > cij

(1;3): 0 + 7 > 5

(3;3): 0 + 7 > 6

Вибираємо максимальну оцінку вільної клітини (А1B3): 5

Для цього в перспективну клітку (А1B3) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-».

Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А1B2) = 70.

Додаємо 70 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 70 з Хij, що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai Bj ui
b1 = 110 b2 = 140 b3 = 220 b4=190 b5=120
а1 = 180 2110 4 570 8 6 u1 = 0
а2 = 300 7 3140 6[-]80 4[+]80 5 u2 = 1
а3 = 230 8 5 6[+] 5[-]110 3120 u3 = 2
а4 = 70 0 0 070 0 0 u4 = -5
vj v1 =2 v2 =2 v3 =5 v4 =3 v5 =1

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi > cij

(3;3): 2 + 5 > 6

Вибираємо максимальну оцінку вільної клітини (А3B3): 6

Для цього в перспективну клітку (А3B3) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А2B3) =80. Додаємо 80 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 80 з Хij, що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai Bj ui
b1 = 110 b2 = 140 b3 = 220 b4=190 b5=120
а1 = 180 2110 4 570 8 6 u1 = 0
а2 = 300 7 3140 6 4160 5 u2 = 0
а3 = 230 8 5 680 530 3120 u3 = 1
а4 = 70 0 0 070 0 0 u4 = -5
vj v1 =2 v2 =3 v3 =5 v4 =4 v5 =2

Перевіримо оптимальність опорного плану, тобто повторюємо описані раніше дії.

Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Перевірка останнього плану на оптимальність за допомогою методу потенціалів показує, що він оптимальний.

Розрахуємо значення цільової функції відповідно до другого опорного плану задачі

F(x) = 2*110 + 5*70 + 3*140 + 4*160 + 6*80 + 5*30 + 3*120 + 0*70 = 2620

За оптимальним планом перевезень загальна вартість перевезень всієї продукції є найменшою і становить 2620 грн.

Завдання 4

Знайти графічним методом екстремуми функцій в області, визначеній нерівностями.