Дадим интервальный прогноз среднего и индивидуального значений по полученной авторегрессионной модели с надежностью на 1 и 2 шага вперед.
Доверительный интервал для среднего размера объема продаж продовольственных товаров по полученной авторегрессионной модели на 01.12.1995 г. (t=36) с надежностью g=0,95:
где стандартная ошибка для средних значений:
,Доверительный интервал для индивидуальных значений размера объема продаж продовольственных товаров по полученной авторегрессионной модели на 01.12.1995 г. (t=36) с надежностью g=0,95:
где стандартная ошибка для индивидуальных значений:
Итак, с надежностью 0,95 среднее значение объема продаж продовольственных товаров на момент t=36 будет заключено в пределах от 233,17 до 275,99 относительных единиц, а его индивидуальное значение — от 189,44 до 319,72 относительных единиц.
Для прогноза на 2 шага вперед:
Доверительный интервал для среднего размера объема продаж продовольственных товаров по полученной авторегрессионной модели на 01.12.1995 г. (t=37) с надежностью g=0,95:
где стандартная ошибка для средних значений
Доверительный интервал для индивидуальных значений размера объема продаж продовольственных товаров по полученной авторегрессионной модели на 01.01.1996 г. (t=37) с надежностью g=0,95:
где стандартная ошибка для индивидуальных значений:
Итак, с надежностью 0,95 среднее значение объема продаж продовольственных товаров на момент t=37 будет заключено в пределах от 212,28 до 254,64 относительных единиц, а его индивидуальное значение — от 169,06 до 299,86 относительных единиц.
5. Выводы по полученным результатам:
Проведя сглаживание временного ряда методом простой скользящей средней, по графику сделали предположение о наличии тренда линейного типа. Вычислив параметры модели, получаем уравнение тренда
Величина коэффициента детерминации R2=0,324 свидетельствует о том, что изменение У на 32% обусловлено влиянием времени. Построенную модель на основе коэффициента корреляции можно признать умеренно качественной.
Проверив значимость построенного уравнения по F-критерию, приходим к выводу, что в 95% случаев уравнение регрессии статистически незначимо и не отражает зависимости между временем и объемом продаж продовольственных товаров, что подтверждается экономической теорией.
Точечный прогноз на 1 шаг вперед на основе полученной модели примет значение
Интервальный прогноз позволяет установить, что размер объема продаж на 01.12.1995 г. в 95% случаев может находиться в интервале от 205 до 335 относительных единиц, а средний размер объема продаж - в интервале от 249 до 292 относительных единиц.
Точечный прогноз на 2 шага вперед на основе полученной модели примет значение
Интервальный прогноз позволяет установить, что размер объема продаж на 01.01.1996 г. в 95% случаев может находиться внутри интервала примерно от 207 до 304 относительных единиц, а средний размер объема продаж – внутри интервала от 207 до 304 относительных единиц.
Поскольку построенное ранее уравнение линейного тренда не является значимым, для прогнозирования значений временного ряда построили авторегрессионную модель
Даем точечный прогноз на 1 шаг вперед
и интервальный на уровне значимости 0,05 для среднего и индивидуального значений –
и
А такжеточечный прогноз на 2 шага вперед
,и интервальный на уровне значимости 0,05 для среднего и индивидуального значений –
и .линейный множественный регрессия модель
Приложение 1
Жилая пло щадь, x | Цена квартиры,у | ( )2 | ( )2 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
20 | 15,9 | 400 | 252,81 | 318 | 19,729 | -3,829 | 14,66124 | - | - | -0,241 |
40,5 | 27 | 1640,25 | 729 | 1093,5 | 30,4095 | -3,4095 | 11,62469 | 0,4195 | 0,175980 | -0,126 |
16 | 13,5 | 256 | 182,25 | 216 | 17,645 | -4,145 | 17,18103 | -0,7355 | 0,540960 | -0,307 |
20 | 15,1 | 400 | 228,01 | 302 | 19,729 | -4,629 | 21,42764 | -0,484 | 0,234256 | -0,307 |
28 | 21,1 | 784 | 445,21 | 590,8 | 23,897 | -2,797 | 7,823209 | 1,832 | 3,356224 | -0,133 |
46,3 | 28,7 | 2143,69 | 823,69 | 1328,81 | 33,4313 | -4,7313 | 22,3852 | -1,9343 | 3,741517 | -0,165 |
45,9 | 27,2 | 2106,81 | 739,84 | 1248,48 | 33,2229 | -6,0229 | 36,27532 | -1,2916 | 1,668231 | -0,221 |
47,5 | 28,3 | 2256,25 | 800,89 | 1344,25 | 34,0565 | -5,7565 | 33,13729 | 0,2664 | 0,070969 | -0,203 |
87,2 | 52,3 | 7603,84 | 2735,29 | 4560,56 | 54,7402 | -2,4402 | 5,954576 | 3,3163 | 10,99785 | -0,047 |
17,7 | 22 | 313,29 | 484 | 389,4 | 18,5307 | 3,4693 | 12,03604 | 5,9095 | 34,92219 | 0,158 |
31,1 | 28 | 967,21 | 784 | 870,8 | 25,5121 | 2,4879 | 6,189646 | -0,9814 | 0,963146 | 0,089 |
48,7 | 45 | 2371,69 | 2025 | 2191,5 | 34,6817 | 10,318 | 106,4673 | 7,8304 | 61,31516 | 0,229 |
65,8 | 51 | 4329,64 | 2601 | 3355,8 | 43,5908 | 7,4092 | 54,89625 | -2,9091 | 8,462863 | 0,145 |
21,4 | 34,4 | 457,96 | 1183,36 | 736,16 | 20,4584 | 13,942 | 194,3682 | 6,5324 | 42,67225 | 0,405 |
∑ 536,1 | 409,5 | 26030,63 | 14014,35 | 18546,06 | 409,6341 | -0,1341 | 544,4277 | 17,7706 | 169,1216 | |2,776| |
Приложение 2
В таблице приведены значения критерия Дарбина-Уотсона для уровня значимости 5% (m - число независимых переменных уравнения регрессии).
Число наблюдений (n) | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 | ||||||||
d1 | d2 | d1 | d2 | d1 | d2 | d1 | d2 | d1 | d2 | ||||
15203050100 | 1,081,201,351,501,65 | 1,361,411,491,591,69 | 0,951,101,281,461,63 | 1,541,541,571,631,72 | 0,821,001,211,421,61 | 1,751,681,651,671,74 | 0,690,901,141,381,59 | 1,971,831,741,721,76 | 0,560,791,071,341,57 | 2,211,991,831,471,78 |
Приложение 3
Критические границы отношения R/S
Объем выборки (n) | Нижние границы | Верхние границы | ||||||||||
Вероятность ошибки | ||||||||||||
0,000 | 0,005 | 0,01 | 0,025 | 0,05 | 0,10 | 0,10 | 0,05 | 0,025 | 0,01 | 0,005 | 0,000 | |
34567891011121314151617181920 | 1,7321,7321,8261,8261,8211,8211,8971,8971,9151,9151,9271,9271,9361,9361,9441,9441,9491,949 | 1,7351,831,982,112,222,312,392,462,532,592,642,702,742,792,832,872,902,94 | 1,7371,872,022,152,262,352,442,512,582,642,702,752,802,842,882,922,962,99 | 1,7451,932,092,222,332,432,512,592,662,722,782,832,882,932,973,013,053,09 | 1,7581,982,152,282,402,502,592,672,742,802,862,922,973,013,063,103,143,18 | 1,7822,042,222,372,492,592,682,762,842,902,963,023,073,123,173,213,253,29 | 1,9972,4092,7122,9493,1433,3083,4493,573,683,783,873,954,024,094,154,214,274,32 | 1,9992,4292,7533,0123,2223,3993,5523,6853,803,914,004,094,174,244,314,374,434,49 | 2,0002,4392,7823,0563,2823,4713,6343,7773,9034,024,124,214,294,374,444,514,574,63 | 2,0002,4452,8033,0953,3383,5433,7203,8754,0124,1344,2444,344,444,524,604,674,744,80 | 2,0002,4472,8133,1153,3693,5853,7723,9354,0794,2084,3254,4314,534,624,704,784,854,91 | 2,0002,4492,8283,1624,4653,7424,0002,2434,4724,6904,8995,0995,2925,4775,6575,8316,0006,164 |
Приложение 4