Смекни!
smekni.com

Линейный множественный регрессивный анализ (стр. 4 из 8)

Поскольку модель со всеми заданными факторами уже построена, и значимость каждого фактора рассчитана, можем перейти к следующему шагу анализа, исключив из модели самый незначимый фактор.

Исключаем фактор Х6 - оценка ВВП по паритету покупательной способности в 1994 г. на душу населения (в % к США). Строим новую модель с оставшимися факторами:

Параметры данного уравнения найдем с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления – в Приложении 8):

b0=11,3789103724081

b1= -0,140477614195711

b2= 0,334073328849854

b4= -0,0590948468841696

b5= 0,354719169807746

Получаем уравнение линейной множественной регрессии:

Расчетные значения критерия для заданных параметров получили с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления – в Приложении 8):

Поскольку

, то коэффициенты b1, b2, b4 не являются значимыми для построенной модели. Исключаем самый незначимый фактор:

Исключаем фактор Х1 - потребление мяса и мясопродуктов на душу населения (кг).

Строим новую модель с оставшимися факторами:

Параметры данного уравнения найдем с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления – в Приложении 9):

b0= 5,45597214112287

b2= 0,200539077387593

b4= -0,0847616134509301

b5= 0,374792925415136

Получаем уравнение линейной множественной регрессии:


Расчетные значения критерия для заданных параметров получили с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления – в Приложении 8):

Поскольку

, то коэффициенты b2, b4 не являются значимыми для построенной модели. Исключаем самый незначимый фактор:

Исключаем фактор Х8 - потребление фруктов и ягод на душу населения (кг). Строим новую модель с оставшимися факторами:

Параметры данного уравнения найдем с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления – в Приложении 10):

b0= -14,5137453627595

b2= 0,272342209805998

b5= 0,471219957359132

Получаем уравнение линейной множественной регрессии:


Расчетные значения критерия для заданных параметров получили с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления – в Приложении 10):

Поскольку

,

то коэффициент b2 не является значимым для построенной модели. Исключаем незначимый фактор:

Исключаем фактор Х3 - потребление сахара на душу населения (кг). Строим новую модель с оставшимся фактором:

Параметры данного уравнения найдем с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления – в Приложении 11):

b0= 0,166147

b5= 0,412251


Получаем уравнение линейной парной регрессии:

Расчетное значение критерия для параметра b5 получили с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления – в Приложении 11):

Поскольку

,

то коэффициент b5 является значимым для построенной модели. Таким образом, посредством пошагового регрессионного анализа, осуществленного методом исключения факторов, получили модель, содержащую только один значимый фактор Х9 - потребление хлебных продуктов на душу населения (кг).

6. Определим прогнозное значение результата, если прогнозные значения факторов составляют 80 % от их максимальных значений.

Поскольку в уравнении регрессии остался лишь один значимый фактор, именно на основе данных о потреблении хлебных продуктов на душу населения будем рассчитывать прогнозное значение результативного показателя.

Если прогнозное значение фактора составит 80% от своего максимального значения

,

тогда точечное прогнозное значение результативного показателя составит

Т.е. еслипотребление хлебных продуктов на душу населения составит 152,8 кг, то прогнозное значение смертности населения по причине болезни органов кровообращения на 100000 населения составит примерно 63.

7. Рассчитаем ошибки и доверительный интервал прогноза для уровня значимости

и
.

Доверительный интервал для среднего размера смертности населения по причине болезни органов кровообращения на 100000 населения при условии, что потребление хлебных продуктов составляет х = 152,8 кг с надежностью g=0,95:

где стандартная ошибка для средних значений:


Т.е. средний размер смертности населения по причине болезни органов кровообращения на 100000 населения при условии, что потребление хлебных продуктов составляет х = 152,8 кг, находится в интервале от 53 до 72 человек. Доверительный интервал для индивидуальных значений размера смертности населения по причине болезни органов кровообращения на 100000 населения при условии, что потребление хлебных продуктов составляет х = 152,8 кг с надежностью g=0,95:

,

где стандартная ошибка для индивидуальных значений:

Таким образом, если потребление хлебных продуктов будет находиться на уровне 152,8 кг, то возможный размер смертности населения по причине болезни органов кровообращения на 100000 населения в 95% случаев может находиться внутри интервала от 35 до 90 человек.

Рассчитаем те же показатели для уровня значимости

Доверительный интервал для среднего размера смертности населения по причине болезни органов кровообращения на 100000 населения при условии, что потребление хлебных продуктов составляет х = 152,8 кг с надежностью g=0,90:


Т.е. средний размер смертности населения по причине болезни органов кровообращения на 100000 населения при условии, что потребление хлебных продуктов составляет х = 152,8 кг, находится в интервале от 55 до 70 человек.

Доверительный интервал для индивидуальных значений размера смертности населения по причине болезни органов кровообращения на 100000 населения при условии, что потребление хлебных продуктов составляет х = 152,8 кг с надежностью g=0,90:

Таким образом, если потребление хлебных продуктов будет находиться на уровне 152,8 кг, то возможный размер смертности населения по причине болезни органов кровообращения на 100000 населения в 90% случаев может находиться внутри интервала от 40 до 85 человек.