Смекни!
smekni.com

Итерационный метод решения проблемы собственных значений (стр. 2 из 2)

Так при задании начального приближения, находящегося далеко от точного решения, итерационный процесс расходится. Если значение начального приближения выбрано близко к точному решению, то итерационный процесс сходится, и чем ближе вектор начального приближения к точному решению, тем за меньшее число итераций сходится итерационный процесс.

Выбор ошибки итерации также влияет на число итераций, а также на время счета. При уменьшении значения допустимой ошибки число итераций увеличивается, что необходимо для получения более точного значения собственного числа. И, наоборот, при увеличении значения допустимой ошибки число итераций уменьшается, а собственное число матрицы имеет более приближенное значение.


Заключение

При выполнении данной работы были рассмотрены теоретически и практически основные характеристики метода скалярных произведений для нахождения максимального собственного числа симметричной матрицы и соответствующего ему вектора собственных значений. Метод отличается простотой и не требует слишком сложных вычислений, что является существенным преимуществом.


Список литературы

1. Сарычева О.М. Численные методы в экономике: Конспект лекций /НГТУ – Новосибирск, 1995. – 65 с.

2. Уилкинс Дж.Х. Алгебраическая проблема собственных значений. – Наука, М. 1970.

3. Фаддеев Д.К., Фаддеев В.И. Вычислительные методы линейной алгебры М. Физматиздат, 1963.