Совсем иная картина наблюдается, когда исследователь начинает применять статистические методы на всех этапах исследования и, прежде всего, перед постановкой опытов, разрабатывая схему эксперимента, а также в процессе экспериментирования, при обработке результатов и после эксперимента, принимая решение о дальнейших действиях. Такой эксперимент называют активным, и он предполагает планирование эксперимента.
Под планированием эксперимента обычно понимают процедуру выбора числа и условий проведения опытов, необходимых и достаточных для решения поставленной задачи с требуемой точностью.
Основные преимущества активного эксперимента связаны с тем, что он позволяет:
- минимизировать общее число опытов;
- выбирать четкие, логически обоснованные процедуры, последовательно выполняемые экспериментатором при проведении исследования;
- использовать математический аппарат, формализующий многие действия экспериментатора;
- одновременно варьировать всеми переменными и оптимально использовать факторное пространство;
- организовать эксперимент таким образом, чтобы выполнялись многие исходные предпосылки регрессионного анализа;
- получать математические модели, имеющие более широкую область практического применения, нежели модели, построенные по результатам пассивного эксперимента;
- рандомизировать условия опытов, т. е. многочисленные несущественные факторы превратить в случайные величины;
- оценивать элемент неопределенности, связанный с экспериментом, что дает возможность сопоставлять результаты, получаемые разными исследователями.
Для того чтобы лучше себе представить, как реализуются идеи активного эксперимента, рассмотрим схему одного из наиболее широко используемых в настоящее время методов планирования эксперимента – метода крутого восхождения, предназначенного для решения экстремальных задач.
В этом методе, как и во многих других методах планирования эксперимента, задача решается поэтапно. На первом этапе, варьируя в каждом опыте сразу все факторы, исследователь ищет лишь направление движения к области экстремума. Для этого поверхность отклика изучают только на небольшом участке и строят для этого участка линейную модель:
Анализ полученного уравнения позволяет наметить направление движения из исходной точки, наиболее быстро приводящее к оптимизации выбранного параметра. В дальнейшем на каждом этапе в соответствии с результатами, полученными на предыдущих этапах, ставят небольшую серию опытов, результаты которых вместе с интуитивными решениями исследователя определяют следующий шаг. Эта процедура заканчивается в области экстремума. Здесь ставят несколько большую серию опытов, и поверхность отклика описывают нелинейными функциями.
Анализ нелинейного уравнения позволяет точно определить координаты экстремума или сделать вывод, что экстремума не существует, а также наметить последующий путь оптимизации.
Сравним классический металловедческий подход и метод крутого восхождения на следующем примере. Предположим, что требуется найти состав наиболее прочного сплава на основе никеля, варьируя в нем содержание алюминия (х1) и тантала (х2). Предположим далее, что зависимость прочности (у) от состава для данных сплавов имеет вид, показанный на рис. 1, чего исследователь, приступая к решению задачи, естественно, не знает.
По интуитивным соображениям или на основании данных других исследований эксперимент начинают со сплава, отвечающего составу точки S1. При традиционном экспериментировании исследователь начинает изменять в этом сплаве содержание одной из добавок при постоянном количестве другой, затем содержание другой при постоянном количестве первой. При таком подходе, начиная с точки S1, вообще можно не найти оптимальный состав сплава (точка S6), поскольку движение по прямой от точки S1 в любую сторону не приводит к существенному упрочнению сплава (см. рис. 1).
Если далее экспериментатор сумеет перейти к другой исходной точке S2, то, последовательно изменяя содержание алюминия и тантала, он найдет наиболее прочный сплав, однако этот путь будет достаточно длинным (S2-S3-S4-S5-S6).
Таким образом, традиционное экспериментирование, предполагающее поочередное изменение переменных, ведет к нерациональному расходованию времени и средств, тем более, что большая часть информации, полученная после подобной работы, часто вообще не представляет практического интереса, поскольку относится к области, далекой от оптимальных условий.
Та же задача методом крутого восхождения решается следующим образом. Вблизи точки S1, начиная от которой при обычном экспериментировании успех вообще мог быть не достигнут, ставят небольшую серию из четырех опытов (точки 1, 2, 3, 4 на рис. 1). Цель этих опытов – еще не поиск состава наиболее прочного сплава. Определение прочности первых четырех сплавов позволяет исследователю приближенно описать неизвестную поверхность отклика на небольшом участке вблизи точки S1, т. е. рассчитать коэффициенты регрессии уравнения:
.Рис. 1. Схема метода крутого восхождения: I – y = b0 + b1x1 + b2x2 ; II – y = b'0 + b'1x1 + b'2x2
Найденные по результатам опытов коэффициенты b1 и b2 определяют направление градиента для данной аппроксимирующей плоскости, т. е. направление изменения содержания алюминия и тантала в сплаве, приводящее к возможно более быстрому повышению прочности сплава. Сделав несколько опытов в этом направлении, т. е. осуществив крутое восхождение по поверхности отклика в направлении градиента линейного приближения (отсюда название метода), исследователь выбирает новую исходную точку S7, возле которой вновь проводит аналогичную серию из четырех опытов, рассчитывает коэффициенты нового линейного приближения теперь уже вблизи точки S7:
y = b'0 + b'1x1 + b'2x2
и осуществляет движение по градиенту этого уравнения. Движение по градиенту производят до попадания в область оптимума, после чего строят и анализируют нелинейную модель этой области. На рис. 1 градиент совпадает с прямой, перпендикулярной изолиниям, т. е. с самым крутым склоном, ведущим от данной точки к вершине. Для поверхности отклика, показанной на рис. 1, оказалось достаточно двух серий опытов, чтобы при крутом восхождении найти состав наиболее прочного сплава.
Даже рассмотренный пример показывает, что планирование эксперимента принципиально отличается от традиционного экспериментирования. При планировании используется многофакторная схема эксперимента, когда эффект влияния какого-либо фактора оценивается по результатам всех опытов. При традиционном экспериментировании (изменении одного фактора при постоянных остальных факторах) используется однофакторная схема, при которой эффект влияния фактора оценивается лишь по некоторой части опытов. Многофакторная схема существенно эффективней. Покажем это на простом примере.
Предположим, что необходимо определить массу трех образцов А, В и С. Рассмотрим два способа проведения эксперимента.
В первом случае схема взвешивания будет такой, как показано в табл. 1. Здесь первый опыт представляет собой холостое взвешивание, т. е. по сути дела, определение нулевого положения весов.
Следующие опыты – поочередное взвешивание каждого из образцов. Масса каждого образца оценивается по результатам только двух опытов: того опыта, в котором взвешивается образец, и холостого взвешивания. Например, масса образца А = у2 - у1; образца В = у3 - у1; образца С = у4 - у1.
Схема взвешивания во втором случае показана в табл. 2.
Здесь в первом опыте взвешивают все три образца вместе (холостое взвешивание не производится), а в следующих опытах – каждый образец в отдельности. В этом случае массу каждого образца оценивают по результатам всех опытов. Действительно, масса образца
; образца ; образца .Таблица 1
Схема однофакторного эксперимента по взвешиванию образцов А, В и С
Номер опыта | А | В | С | Результаты взвешивания |
1 | - | - | - | y1 |
2 | + | - | - | y2 |
3 | - | + | - | y3 |
4 | - | - | + | y4 |
Таблица 2
Схема многофакторного эксперимента по взвешиванию образцов А, В и С
Номер опыта | А | В | С | Результаты взвешивания |
1 | + | + | + | y1 |
2 | + | - | - | y2 |
3 | - | + | - | y3 |
4 | - | - | + | y4 |
Какой же из способов взвешивания лучше? Будем считать лучшим способом тот, который дает более высокую точность. Если воспользоваться законом сложения дисперсий, для первого способа взвешивания получим:
где
– дисперсия результатов взвешивания образцов; Sy – среднеквадратичная ошибка взвешивания.Для второго способа