Введение
В данной главе рассматриваются задачи описания упорядоченных данных, полученных последовательно (во времени). Вообще говоря, упорядоченность может иметь место не только во времени, но и в пространстве, например, диаметр нити как функция её длины (одномерный случай), значение температуры воздуха как функция пространственных координат (трёхмерный случай).
В отличие от регрессионного анализа, где порядок строк в матрице наблюдений может быть произвольным, во временных рядах важна упорядоченность, а следовательно, интерес представляет взаимосвязь значений, относящихся к разным моментам времени.
Если значения ряда известны в отдельные моменты времени, то такой ряд называют дискретным, в отличие от непрерывного, значения которого известны в любой момент времени. Интервал между двумя последовательными моментами времени назовём тактом(шагом). Здесь будут рассматриваться в основном дискретные временные ряды с фиксированной протяжённостью такта, принимаемой за единицу счёта. Заметим, что временные ряды экономических показателей, как правило, дискретны.
Значения ряда могут быть измеряемыми непосредственно (цена, доходность, температура), либо агрегированными (кумулятивными), например, объём выпуска; расстояние, пройдённое грузоперевозчиками за временной такт.
Если значения ряда определяются детерминированной математической функцией, то ряд называют детерминированным. Если эти значения могут быть описаны лишь с привлечением вероятностных моделей, то временной ряд называют случайным.
Явление, протекающее во времени, называют процессом, поэтому можно говорить о детерминированном или случайном процессах. В последнем случае используют часто термин “стохастический процесс”. Анализируемый отрезок временного ряда может рассматриваться как частная реализация (выборка) изучаемого стохастического процесса, генерируемого скрытым вероятностным механизмом.
Временные ряды возникают во многих предметных областях и имеют различную природу. Для их изучения предложены различные методы, что делает теорию временных рядов весьма разветвленной дисциплиной. Так, в зависимости от вида временных рядов можно выделить такие разделы теории анализа временных рядов:
– стационарные случайные процессы, описывающие последовательности случайных величин, вероятностные свойства которых не изменяются во времени. Подобные процессы широко распространены в радиотехнике, метереологии, сейсмологии и т. д.
– диффузионные процессы, имеющие место при взаимопроникновении жидкостей и газов.
– точечные процессы, описывающие последовательности событий, таких как поступление заявок на обслуживание, стихийных и техногенных катастроф. Подобные процессы изучаются в теории массового обслуживания.
Мы ограничимся рассмотрением прикладных аспектов анализа временных рядов, которые полезны при решении практических задач в экономике, финансах. Основной упор будет сделан на методы подбора математической модели для описания временного ряда и прогнозирования его поведения.
Практическое изучение временного ряда предполагает выявление свойств ряда и получение выводов о вероятностном механизме, порождающем этот ряд. Основные цели при изучении временного ряда следующие:
– описание характерных особенностей ряда в сжатой форме;
– построение модели временного ряда;
– предсказание будущих значений на основе прошлых наблюдений;
– управление процессом, порождающим временной ряд, путем выборки сигналов, предупреждающих о грядущих неблагоприятных событиях.
Достижение поставленных целей возможно далеко не всегда как из-за недостатка исходных данных (недостаточная длительность наблюдения), так из-за изменчивости со временем статистической структуры ряда.
Перечисленные цели диктуют в значительной мере, последовательность этапов анализа временных рядов:
1) графическое представление и описание поведения ряда;
2) выделение и исключение закономерных, неслучайных составляющих ряда, зависящих от времени;
3) исследование случайной составляющей временного ряда, оставшейся после удаления закономерной составляющей;
4) построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности;
5) прогнозирование будущих значений ряда.
При анализе временных рядов используются различные методы, наиболее распространенными из которых являются :
1) корреляционный анализ, используемый для выявления характерных особенностей ряда (периодичностей, тенденций и т. д.);
2) спектральный анализ, позволяющий находить периодические составляющие временного ряда;
3) методы сглаживания и фильтрации, предназначенные для преобразования временных рядов с целью удаления высокочастотных и сезонных колебаний;
4) модели авторегрессии и скользящего среднего для исследование случайной составляющей временного ряда ;
5) методы прогнозирования.
Как уже отмечалось, в модели временного ряда принято выделять две основные составляющие : детерминированную и случайную (рис.). Под детерминированной составляющей временного ряда
понимают числовую последовательность , элементы которой вычисляются по определенному правилу как функция времени t. Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять чисто случайные скачки, а в другом – плавное колебательное движение. В большинстве случаев будет нечто среднее: некоторая иррегулярность и определенный систематический эффект, обусловленный зависимостью последовательных членов ряда.В свою очередь, детерминированная составляющая может содержать следующие структурные компоненты:
1) тренд g, представляющий собой плавное изменение процесса во времени и обусловленный действием долговременных факторов. В качестве примера таких факторов в экономике можно назвать : а) изменение демографических характеристик популяции (численности, возрастной структуры); б) технологическое и экономическое развитие; в) рост потребления.
2) сезонный эффект s, связанный с наличием факторов, действующих циклически с заранее известной периодичностью. Ряд в этом случае имеет иерархическую шкалу времени (например, внутри года есть сезоны, связанные с временами года, кварталы, месяцы) и в одноименных точках ряда имеют место сходные эффекты.
Рис. Структурные компоненты временного ряда.
Типичные примеры сезонного эффекта: изменение загруженности автотрассы в течение суток, по дням недели, временам года, пик продаж товаров для школьников в конце августа - начале сентября. Сезонная компонента со временем может меняться, либо носить плавающий характер. Так на графике объема перевозок авиалайнерами (см рис.) видно, что локальные пики, приходящиеся на праздник Пасхи «плавают» из-за изменчивости ее сроков.
Циклическая компонента c, описывающая длительные периоды относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Подобная компонента весьма характерна для рядов макроэкономических показателей. Циклические изменения обусловлены здесь взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т. п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда.
«Взрывная» компонента i, иначе интервенция, под которой понимают существенное кратковременное воздействие на временной ряд. Примером интервенции могут служить события «черного вторника» 1994г., когда курс доллара за день вырос на несколько десятков процентов.
Случайная составляющая ряда отражает воздействие многочисленных факторов случайного характера и может иметь разнообразную структуру, начиная от простейшей в виде «белого шума» до весьма сложных, описываемых моделями авторегрессии-скользящего среднего (подробнее дальше).
После выделения структурных компонент необходимо специфицировать форму их вхождения во временной ряд. На верхнем уровне представления с выделением лишь детерминированной и случайной составляющих обычно используют аддитивную либо мультипликативную модели.
Аддитивная модель имеет вид
;мультипликативная –
,где
- значение ряда в момент t ; - значение детерминированной составляющей; - значение случайной составляющей.В свою очередь, детерминированная составляющая может быть представлена как аддитивная комбинация детерминированных компонент:
,как мультипликативная комбинация:
либо как смешанная комбинация, например,
Тренд отражает действие постоянных долговременных факторов и носит плавный характер, так что для описания тренда широко используют полиномиальные модели, линейные по параметрам