Смекни!
smekni.com

Анализ временных рядов (стр. 5 из 12)

.

На практике считается, что для оценки сезонных эффектов временной ряд должен содержать не менее пяти-шести периодов сезонности.

Перейдем теперь к способам удаления сезонного эффекта из ряда. Таких способов два. Первый из них назовем «послетрендовый». Он является логическим следствием рассмотренной выше процедуры оценивания. Для аддитивной модели удаление сезонной компоненты сводится к вычитанию оцененной сезонной компоненты из исходного ряда. Для мультипликативной модели значения ряда делят на соответствующие сезонные индексы.

Второй способ не требует предварительной оценки ни трендовой, ни сезонной компонент, а основывается на использовании разностных операторов.

Разностные операторы.

При исследовании временных рядов часто имеется возможность представить детерминированные функции времени простыми рекуррентными уравнениями. К примеру, линейный тренд

(1)

можно записать как

(2)

Последнее соотношение получается из (1) сравнением двух значений ряда для соседних моментов t-1 и t . Учитывая, что соотношение (2) справедливо и для моментов t-2 и t-1, так что

, модель (1) можно записать и в виде

(3)

Модель (3) не содержит явно параметров, описывающих тренд. Более компактно описанные преобразования можно описать, используя операторы взятия разности назад

.

.

Модели (2) и (3) можно записать как

,
.

Выходит, разность второго порядка полностью исключает из исходного ряда линейный тренд. Легко видеть, что разность порядка dисключает из ряда полиномиальный тренд порядка d-1. Пусть теперь ряд содержит сезонный эффект с периодом t, так что

(4).

Процедура перехода от ряда

(t= 1,2,...,T) к ряду
называется взятием первой сезонной разности, а оператор
сезонным разностным оператором с периодом t. Из (4) следует, что

.

Выходит, взятие сезонной разности

исключает из временного ряда
любую детерминированную сезонную компоненту.

Иногда оказываются полезными сезонные операторы более высоких порядков. Так, сезонный оператор второго порядка с периодом t есть

.

Если ряд содержит и тренд, и сезонную составляющую, их можно исключить, последовательно применяя операторы

и
.

Легко показать, что порядок применения этих операторов не существенен:

.

Отметим также, что детерминированный тренд, состоящий из тренда и сезонной компоненты, после применения операторов

и
полностью вырождается, то есть
. Однако записав последнее уравнение в рекуррентной форме, получаем

.

Из последнее соотношения видно, каким образом ряд можно неограниченно продолжать, имея вначале по крайней мере t+1 последовательных значения.

6. Модели случайной составляющей временного ряда

линейный ряд временной система

Для удобства изложения условимся обозначать здесь случайные величины так, как это принято в математической статистике – строчными буквами.

Случайным процессом X(t) на множестве Т называют функцию, значения которой случайны при каждом tÎT. Если элементы Т счетные (дискретное время), то случайный процесс часто называют случайной последовательностью.

Полное математическое описание случайного процесса предполагает задание системы функций распределения:

– для каждого tÎT

, (1)

– для каждой пары элементов

(2)

и вообще для любого конечного числа элементов

(3).

Функции (1),(2),(3) называют конечномерными распределениями случайного процесса.

Построить такую систему функции для произвольного случайного процесса практически невозможно. Обычно случайные процессы задают с помощью априорных предположений о его свойствах, таких как независимость приращений, марковский характер траекторий и т. п.

Процесс, у которого все конечномерные распределения нормальны, называется нормальным (гауссовским). Оказывается, что для полного описания такого процесса достаточно знания одно- и двумерного распределений (1), (2), что важно с практической точки зрения, поскольку позволяет ограничиться исследованием математического ожидания и корреляционной функцией процесса.

В теории временных рядов используются ряд моделей случайной составляющей, начиная от простейшей – «белого шума», до весьма сложных типа авторегрессии – скользящего среднего и других, которые строятся на базе белого шума.

Прежде чем определять процесс белого шума рассмотрим последовательность независимых случайных величин, для которой функция распределения есть

.

Из последнего соотношения следует, что все конечномерные распределения последовательности определяются с помощью одномерных распределений.

Если к тому же в такой последовательности составляющие ее случайные величины X(t) имеют нулевое математическое ожидание и распределены одинаково при всех tÎT, то это – «белый шум». В случая нормальности распределения X(t) говорят о гауссовском белом шуме. Итак, гауссовский белый шум – последовательность независимых нормально распределенных случайных величин с нулевым математическим ожиданием и одинаковой (общей) дисперсией.

Более сложными моделями, широко используемыми в теории и практике анализа временных рядов, являются линейные модели: процессы скользящего среднего, авторегрессии и смешанные.

Процесс скользящего среднего порядка q

представляет собой взвешенную сумму случайных возмущений:

(4),

где

– независимые одинаково распределенные случайные величины (белый шум);

– числовые коэффициенты.

Легко видеть из определения, что у процесса скользящего среднего порядка q (сокращенно CC(q)) статистически зависимыми являются (q+1) подряд идущих величин X(t), X(t-1),..., X(t-q). Члены ряда, отстоящие друг от друга больше чем на (q+1) такт, статистически независимы, поскольку в их формировании участвуют разные слагаемые

.

Процессом авторегрессии порядка p (сокращенно АР(р)) называют взвешенную возмущенную сумму p прошлых значений временного ряда

(5),

где

– случайное возмущение, действующее в текущий момент t;

– числовые коэффициенты.

Выражая последовательно в соответствии с соотношением (5) X(t-1) через X(t-2), . . . , X(t-p-1), затем X(t-2) через X(t-3), . . . , X(t-p-2) и т.д. получим, что X(t) есть бесконечная сумма прошлых возмущений

Из этого следует, члены процесса авторегрессии X(t) и X(t-k) статистически зависимы при любомk.

Процесс АР(1) часто называют процессом Маркова, АР(2) – процессом Юла. В общем случае марковским называют такой процесс, будущее которого определяется только его состоянием в настоящем и воздействиями на процесс, которые будут оказываться в будущем, тогда как его состояние до настоящего момента при этом несущественно. Процесс АР(1)