Из последнего соотношения получаем
.Следовательно, метод последовательных разностей переменной состоит в вычислении первых, вторых, третьих и т.д. разностей , определении сумм квадратов, делении на
и т.д. и обнаружения момента , когда это отношение становится постоянным. Таким образом мы получаем оценки порядка полинома , содержащегося в исходном ряде, и дисперсии случайного компонента.Методы построения функций для описания наблюдений до сих пор основывался на критерии наименьших квадратов, в соответствии с которым все наблюдения имеют равный вес. Однако, можно предположить, что недавним точкам следует придавать в некотором смысле больший вес, а наблюдения, относящиеся к далекому прошлому, должны иметь по сравнению с ними меньшую ценность. До некоторой степени мы учитывали это в скользящих средних с конечной длиной отрезка усреднения, где значения весов, приписываемых группе из 2m+1 значений, не зависят от предшествующих значений. Теперь обратимся к другому методу выделения более «свежих» наблюдений.
Рассмотрим ряд весов, пропорциональных множителю b, а именно
и т.д. Так как сумма весов должна равняться единице, т.е. , весами фактически будут и т.д. ( предполагается , что 0<b<1.)4.3.1 Простое экспоненциальное сглаживание
Рассмотрим простейший ряд
, равный сумме постоянной (уровень) и случайной компоненты : .Будем считать, что ряд имеет бесконечную предысторию, т. е. время принимает значения t,t-1,t-2,..., - ¥ . Найдем оценку
уровня ряда , воспользовавшись минимизацией взвешенной суммы квадратов: .В приведенном выражении расхождения между наблюденными значениями ряда и оценкой уровня берутся с экспоненциально убывающими весами в зависимости от возраста данных.
; ; .Полученную оценку
на момент t обозначим (t). Сглаженное значение в момент t можно выразить через сглаженное значение в прошлый момент t-1 и новое наблюдение :Полученное соотношение
(t) =Перепишем несколько иначе, введя так называемую постоянную сглаживания
(0 £a£1). (t) ,Из полученного соотношения видно, что новое сглаженное значение получается из предыдущего коррекцией последнего на долю ошибки, рассогласования, между новым и прогнозным значениями ряда. Происходит своего рода адаптация уровня ряда к новым данным.
4.3.2 Экспоненциальное сглаживание высоких порядков
Обобщим метод экспоненциального сглаживания на случай , когда модель процесса определяется линейной функцией
. Как и прежде, при заданном b минимизируем: .(Здесь для удобства представления знаки ~ и Ù опущены).
,С учетом того что
, ,получаем
Запишем :
.Эту операцию можно рассматривать как сглаживание 1-го порядка. По аналогии построим сглаживание 2-го порядка:
.ß
; . ; ; ; ; ; .Рассмотренную выше процедуру можно обобщить на случай полиномиальных трендов более высокого порядка n , при этом алгебраические выражения будут сложнее. Например, если модель описывается параболой, то используется метод тройного экспоненциального сглаживания.
Сезонные компоненты могут представлять самостоятельный интерес либо выступать в роли мешающего фактора. В первом случае необходимо уметь выделять их из ряда и оценивать параметры соответствующей модели. Что же касается удаления сезонной компоненты из ряда, то здесь возможны несколько способов.
Рассмотрим сначала процедуру оценивания сезонных эффектов. Пусть исходный ряд является полностью аддитивным, то есть
.Необходимо оценить
по наблюденным . Иными словами, необходимо получить оценки коэффициентов индикаторной модели.Как уже отмечалось, сезонный эффект проявляется на фоне тренда, поэтому вначале необходимо оценить трендовую составляющую одним из рассмотренных методов. Затем для каждого сезона
вычисляют все относящиеся к нему разностигде, как обычно,
- наблюденное значение ряда, - оцененное значение тренда.Каждая из этих разностей дает совместную оценку сезонного эффекта и случайного компонента, отличного, правда, от исходного
в силу взятия разностей.Производя усреднение полученных разностей, получают оценки эффектов. Полагая, что исходный ряд содержит целое число k периодов сезонности и ограничиваясь простым средним, имеем
С учетом условия репараметризации, требующим, чтобы сумма сезонных эффектов равнялась нулю, получаем скорректированные оценки
.В случае мультипликативного сезонного эффекта, когда модель ряда имеет вид
,вычисляют уже не разности, а отношения
.В качестве оценки сезонного индекса
выступает среднее