где значения степени k полинома редко превышает 5.
Наряду с полиномиальными моделями экономические данные, описывающие процессы роста, часто аппроксимируются следующими моделями:
– экспоненциальной
.Эта модель описывает процесс с постоянным темпом прироста, то есть
– логистической
У процесса, описываемого логистической кривой, темп прироста изучаемой характеристики линейно падает с увеличением y, то есть
– Гомперца
.Эта модель описывает процесс, в котором темп прироста исследуемой характеристики пропорционален ее логарифму
.Две последние модели задают кривые тренда S-образной формы, представляя процессы с нарастающим темпом роста в начальной стадии с постепенным замедлением в конце.
При подборе подходящей функциональной зависимости, иначе спецификации тренда, весьма полезным является графическое представление временного ряда.
Отметим также, что тренд, отражая действие долговременных факторов, является определяющим при построении долговременных прогнозов.
Сезонный эффект во временном ряде проявляется на «фоне» тренда и его выделение оказывается возможным после предварительной оценки тренда. (Здесь не рассматриваются методы спектрального анализа, позволяющего выделить вклад сезонной компоненты в спектр без вычисления других компонент ряда). Действительно, линейно растущий ряд помесячных данных будет иметь схожие эффекты в одноименных точках – наименьшее значение в январе и наибольшее в декабре; однако вряд ли здесь уместно говорить о сезонном эффекте: исключив линейный тренд, мы получим ряд, в котором сезонность полностью отсутствует. В то же время ряд, описывающий помесячные объемы продаж новогодних открыток, хотя и будет иметь такую же особенность (минимум продаж в январе и максимум в декабре) будет носить скорее всего колебательный характер относительно тренда, что позволяет специфицировать эти колебания как сезонный эффект.
В простейшем случае сезонный эффект может проявляться в виде строго периодической зависимости.
, для любого t, где t - период сезонности.В общем случае значения, отстоящие на tмогут быть связаны функциональной зависимостью, то есть
.К примеру, сезонный эффект сам может содержать трендовую составляющую, отражающую изменение амплитуды колебаний .
Если сезонный эффект входит в ряд аддитивно, то
модель сезонного эффекта можно записать как ,где
- булевы, иначе индикаторные, переменные, по одной на каждый такт внутри периода t сезонности. Так, для ряда месячных данных =0 для всех t, кроме января каждого года, для которого =1 и так далее. Коэффициент при показывает отклонение январских значений от тренда, - отклонение февральских значений и так далее до . Чтобы снять неоднозначность в значениях коэффициентов сезонности , вводят дополнительное ограничение, так называемое условие репараметризации, обычно .В том случае, когда сезонный эффект носит мультипликативный характер, то есть
модель ряда с использованием индикаторных переменных можно записать в виде
Коэффициенты
, в этой модели принято называть сезонными индексами.Для полностью мультипликативного ряда
обычно проводят процедуру линеаризации операцией логарифмирования
.Условимся называть представленные модели сезонного эффекта «индикаторными». Если сезонный эффект достаточно «гладкий» – близок к гармонике, используют «гармоническое» представление
,где d - амплитуда, w - условия частоты (в радианах в единицу времени), a - фаза волны. Поскольку фаза обычно заранее неизвестна. Последнее выражение записывают как
,где
, .Параметры А и В можно оценить с помощью обычно регрессии. Угловая частота wсчитается известной. Если качество подгонки окажется неудовлетворительным, наряду с гармоникой wосновной волны в модель включают дополнительно первую гармонику (с удвоенной основной частотой 2w), при необходимости и вторую и так далее гармоники. В принципе, из двух представлений: индикаторного и гармоничного – следует выбирать то, которое потребует меньшего числа параметров.
Интервенция, представляющая собой воздействие, существенно превышающее флуктуации ряда, может носить характер «импульса» или «ступеньки».
Импульсное воздействие кратковременно: начавшись, оно почти тут же заканчивается. Ступенчатое воздействие длительно, носит устойчивый характер. Обобщенная модель интервенции имеет вид
,где
- значение детерминированной компоненты ряда, описываемой как интервенция; - коэффициенты типа авторегрессии; - коэффициенты типа скользящего среднего; - экзогенная переменная одного из двух типов; («ступень»), или («импульс»)где
-- фиксированный момент времени, называемый моментом интервенции.Приведенные в п.3.1 спецификации ряда являются параметрическими функциями времени. Оценивание параметров может быть проведено по методу наименьших квадратов так же, как в регрессионном анализе. Хотя статистические предпосылки регрессионного анализа (см п. ) во временных рядах часто не выполняются (особенно п.5 – некоррелированность возмущений), тем не менее оценки тренда оказываются приемлемыми, если модель специфицирована правильно и среди наблюдений нет больших выбросов. Нарушение предпосылок регрессионного анализа сказывается не столько на оценках коэффициентов, сколько на их статистических свойствах, в частности, искажаются оценки дисперсии случайной составляющей и доверительные интервалы для коэффициентов модели.
В литературе описываются методы оценивания в условиях коррелированности возмущений, однако их применение требует дополнительной информации о корреляции наблюдений.
Главная проблема при выделении тренда состоит в том, что подобрать единую спецификацию для всего временного часто невозможно, поскольку меняются условия протекания процесса. Учет этой изменчивости особенно важен, если тренд вычисляется для целей прогнозирования. Здесь сказывается особенность именно временных рядов: данные относящиеся к «далекому прошлому» будут неактуальными, бесполезными или даже «вредными» для оценивания параметров модели текущего периода. Вот почему при анализе временных рядов широко используются процедуры взвешивания данных.