Смекни!
smekni.com

Анализ временных рядов (стр. 10 из 12)

, (2)

где

– есть постоянные коэффициенты,

(j=1,2,...,р) – корни характеристического уравнения.

(3)

Стационарность ряда (2) имеет место, если корни уравнения (3) имеют модуль меньше единицы. Другими словами, корни должны лежать внутри единичного круга. Считая, что ряд имеет достаточно длинную предысторию, общим решением (2) можно пренебречь вследствие затухания.

Частое решение, как видно из (

), есть

Последнее соотношение есть форма представления авторегрессионного процесса в виде общей линейной модели.

Последовательно умножим уравнение (1) на

, возьмем математическое ожидание и разделим на
. Получим систему уравнений относительно коэффициентов корреляции :

, k=1, 2, ..., p(4)

Учитывая, что

, и вводя матричные обозначения

,

запишем (4) в виде

Pa=r(5)

Систему уравнений (5) называют системой Юла-Уокера. Из нее находим, что

a=

r(6)

Таким образом, зная первые р автокорреляций временного ряда, можно найти по (3) автокорреляции более высокого порядка, то есть полностью восстановить автокорреляционную функцию (что уже отмечалось при анализе процессов АР(1) и АР(2)).

Поведение автокорреляционной функции зависит от корней характеристического полинома. Обычно коррелограмма процесса АР(р) состоит из совокупности затухающих синусоид.

Если у процесса АР(2) частная автокорреляция членов ряда, разделенных 2-мя или большим числом членов, равна нулю, то у процесса АР(р) нулю равны автокорреляции порядка р и выше. Выходит, частная коррелограмма процесса АР(р) должна равняться нулю, начиная с некоторого момента. Правда, надо заметить, что этот факт имеет место для бесконечного ряда. Для конечных реализаций указать место обрыва коррелограммы часто затруднительно.

Итак, для процесса АР(р) частная автокорреляционная функция обрывается на лаге р, тогда как автокорреляционная функция плавно спадает.

10.1.4 Процессы скользящего среднего

Обобщенная линейная модель для процессов скользящего среднего содержит лишь конечное число членов, то есть в ( ):

=0 k> q .

Модель приобретает вид

(1)

(В (1) коэффициенты

переобозначены через
.)

Соотношение (1) определяет процесс скользящего среднего порядка q, или сокращенно СС(q). Условие обратимости ( ) для процесса СС(q) выполняется, если корни многочлена b(В) лежат вне единичного круга.

Найдем дисперсию процесса СС(q):

Все смешанные произведения вида

равны нулю в силу некоррелированности возмущений в разные моменты времени. Для нахождения автокорреляционной функции процесса СС(q) последовательно умножим (1) на
и возьмем математическое ожидание

(2)

В правой части выражения (2) останутся только те члены, которые отвечают одинаковым временным тактам (см. рис )


(k=2)

Следовательно, выражение (2) есть

(3)

поделив (3) на

, получим

(4)

Тот факт, что автокорреляционная функция процесса СС(q) имеет конечную протяженность (q тактов) – характерная особенность такого процесса. Если

известны, то (4) можно в принципе разрешить относительно параметров
. Уравнения (4) нелинейные и в общем случае имеют несколько решений, однако условие обратимости всегда выделяет единственное решение.

Как уже отмечалось, обратимые процессы СС можно рассматривать как бесконечные АР- процессы -АР(¥). Следовательно, частная автокорреляцонная функция процесса СС(р) имеет бесконечную протяженность. Итак, у процесса СС(q) автокорреляционная функция обрывается на лаге q, тогда как частная автокорреляционная функция плавно спадает.

10.1.5 Комбинированные процессы авторегрессии - скользящего среднего

Хотя модели АР(р) и СС(q) позволяют описывать многие реальные процессы, число оцениваемых параметров может оказываться значительным. Для достижения большей гибкости и экономичности описания при подборе моделей к наблюдаемым временным рядам весьма полезными оказались смешанные модели, содержащие в себе и авторегрессию и скользящее среднее. Эти модели были предложены Боксом и Дженкинсом и получили название модели авторегрессии - скользящего среднего (сокращенно АРСС(р, q)):

(1)

С использованием оператора сдвига В модель (1) может быть представлена более компактно:


, (
)

где а(В)—авторегрессионный оператор порядка р,

b(В)—оператор скользящего среднего порядка q.

Модель (

) может быть записаны и так :

Рассмотрим простейший смешанный процесс АРСС(1,1)

Согласно

(2)

Из соотношения (2) видно, что модель АРСС(1,1) является частным случаем общей линейной модели ( ) с коэффициентами

(j>0)

Из (2) легко получить выражение для дисперсии

:

Для получения корреляционной функции воспользуемся тем же приемом, что и при анализе моделей авторегрессии. Умножим обе части модельного представления процесса АРСС(1,1)

на

и возьмем математическое ожидание :

или (с учетом того, что второе слагаемое в правой части равенства равно нулю)

Поделив ковариации

на дисперсию
получаем выражения для автокорреляции