Смекни!
smekni.com

Прогнозування розвитку динаміки України як господарської системи (стр. 4 из 7)

Враховуючи це, слід визначити, що мета прогнозування тісно пов'язана з вибором типу моделей. Так, а теоретичні моделі, не намагаються пояснити економічну поведінку. Якщо, наприклад, структурна модель може включати рівняння, які пояснюють попит та пропозицію грошей, то а теоретична модель включатиме лише рівняння, яке визначає кількість грошей в залежності від інших факторів (наприклад, рівня цін або попередніх значень кількості грошей). УАК моделі як раз комбінують такі а теоретичні зв'язки. УАК модель є системою рівнянь, де кожна змінна використовується для визначення іншої змінної в моделі. Кожна змінна залежить від своїх попередніх значень та попередніх значень всіх інших змінних моделі. На відміну від економічних залежностей УАЕ моделі ніколи не намагаються зробити які-небудь обмеження про залежність змінних. Оскільки УАЕ моделі використовують попередні значення змінних, то такі моделі придатні для короткострокового прогнозування, проте існує два суттєвих недоліки таких моделей: по-перше, велика кількість даних, необхідних для побудови моделі; по-друге, вони не пояснюють економічної суті залежності між змінними. Обидва типи структурних та УАК моделей можуть бути використані для прогнозування розвитку економічних змінних. Як зазначено вище, УАК моделі виробляють прогнози на короткий період часу, але вони надто залежні від структури економіки. Лише незначна зміна в структурі призводить до значних похибок прогнозів. На відміну від УАК моделей структурні моделі більш гнучкі, що дозволяє їх легко розуміти та вносити до них корективи.

Нарешті, прогнози розробляються і спеціалістами у даній галузі. Використання суб'єктивних прогнозів є доцільним, оскільки експерти мають інформацію про нещодавні події, ефект яких ще не впливав на часові ряди, або подій, які траплялися у минулому, але не очікується їх поява у майбутньому, або подій, що не траплялися у минулому, але які дуже імовірно проявляться у майбутньому. Наприклад, експерти можуть передбачити, як зміниться політика центрального банку протягом прогнозного періоду, або вони очікують великих змін в економіці в залежності від зміни, наприклад, податків. Однак хибою таких оцінок є те, що навіть один і той самий експерт у різний час може давати різні прогнозні значення на деякий визначений період. На відміну від прогнозів експертів, статистичні методи надійні в тому плані, що за однакової початкової інформації, дослідник отримає завжди однакові прогнозні значення, Але ці методи не використовують вплив останніх подій, які ще не відображені у даних.

Єдиним виходом з ситуації, коли обидва типи прогнозів не мають задовільної точності є їх поєднання. Це можна зробити багатьма шляхами. По-перше, експерти визначають, які саме данні важливі при прогнозуванні. По-друге, експерти можуть визначити, який саме підхід слід використовувати при прогнозуванні саме цих рядів даних. Наприклад, якщо експерти очікують постійного спаду ВНП, то вони пропонують трендову модель. Нарешті, експерти можуть вказати основні тенденції прогнозу, такі як: спад, зростання, без змін, тощо, або вказати максимальні відхилення прогнозу від поточного рівня.

Армстронг виділяє п'ять процедур, які утворені поєднанням експертних суджень і статистичних методів:

а) Перероблений прогноз експерта, який утворений на основі статистичного прогнозу.

б) Комбінований прогноз, який утворений на основі вибору експертом відповідного статистичного методу, або утворений як лінійна комбінація прогнозів.

в) Перероблений екстрапольований прогноз, який утворений на основі статистичного прогнозу, але експерти змінили величину прогнозу в залежності від політичних або інших сподівань.

г) Оснований на специфічних знаннях. Цей прогноз будується як статистична екстраполяція суджень експертів в даній галузі. Наприклад, якщо експерт вважає, що експорт у першому кварталі має спадати, то не може бути обраний статистичний метод, при якому відбувається зростання у цей період.

д)Економетричний прогноз, побудований на основі регресійного аналізу або структурної моделі по даних, які обрані експертами. Ці дані в деяких випадках показують не тільки економічну інформацію, але й деякі політичні впливи.

Для вибору оптимальної моделі враховується багато факторів, серед яких необхідно виділити:

а) Наявність достатньої кількості спеціалістів для підтримки відповідного типу моделі, які мають вводити потрібну інформацію до моделі, редагувати її, виводити прогнозні значення. Якщо припустити, що кіль кість даних значно перевищує можливості вводу, то виникає необхідність скласти план агрегації чи модифікації даних.

б) Структура даних, які будуть використовуватися в моделі. Необхідно чітко визначити, які відділи чи установи, в який час генерують відповідні дані, як само їх треба обробляти. Вся зайва інформація повинна бути виключена.

в) Створення чітко визначених процедур аналізу нових даних. Перш за все необхідно побудувати графіки нових даних для того, щоб швидко усвідомити приблизну залежність даних, їх наповненість, структуру.

г) Необхідність будування в першу чергу залежності між малою кількістю змінних для знаходження ступеня взаємовпливу між ними, спостереження його зміни протягом часу. Можливість створення малої моделі економіки чи деякого процесу, на основі якої отримують прогнозні значення. Поступово ця модель буде видозмінюватися, що підвищить точність прогнозів.

Всі ці фактори вплинуть на вибір адекватної моделі. Найбільш імовірно, що при користуванні цими принципами буде побудована змішана модель, в якій частина рівнянь є структурними, частина рівнянь – представляє VERмодель, а ще існують деякі змінні, на які впливає головний спостерігач за моделлю. Такий вплив може здійснюватися на основі досвіду або інтуїції.

Особливо актуальним є створення подібних моделей у НБУ. Не секрет, що за останні декілька років, прогнозування у НБУ ускладнювалося внаслідок зміни політичної чи економічної ситуації. Тому можна констатувати, що в моделях не враховувалася саме ця частина, яку б міг імітувати головний спостерігач.

Все вищесказане підводить до алгоритму вибору найбільш раціональної стратегії прогнозування:

а) Визначити необхідну інформацію та цілі прогнозування.

б) Визначити на графічному зображенні даних наявність тренда, сезонних коливань, структуру даних.

в) Позбавитись за допомогою додаткової інформації від даних, які є нехарактерними для даного ряду і ймовірність повторення їх є незначною.

г) Визначити характер тренда (без тренда, повністю лінійний, локально лінійний, інший), сезонних коливань (не існує, мультиплікативні, адитивні, інші) тощо.

д) Обчислити коефіцієнти моделі.

е) Перевірити модель на адекватність. При необхідності внести до даткові обмеження за допомогою експертів.

ж) Підрахувати прогнози. При необхідності внести поправки на експертні прогнози за допомогою лінійної комбінації значень. В деяких випадках можна утворювати комбінації декількох статистичних та експертних прогнозів.

Оскільки для прогнозування можна використовувати набір різних методів, то слід визначити підходи до комбінування прогнозів. Дійсно, на практиці дослідники застосовують багато методів прогнозування, користуючись своїми уподобаннями, навичками, володінням програмним забезпеченням, замовленням на застосування визначеної методики тощо. Звичайно, при використанні будь-якого методу спеціалісти намагаються добитися мінімальної похибки при прогнозуванні. Критерії визначення величин помилок були розглянуті в першому розділі. Іноді буває, що один з методів, який добре зарекомендував себе в минулому, дав погані прогнози, і навпаки. Щоб застрахуватися від подібних ситуацій, а також поліпшити точність прогнозування необхідно використовувати комбінації прогнозів.

Найбільш відомими є дві методики:

а) дисперсійно-коваріаційний метод, що дозволяє зводити декілька незміщених прогнозів в лінійну комбінацію з найменшою дисперсією, ваги якої залежать від дисперсій та коваріацій похибок прогнозів;

б) регресійний метод, який є узагальненням дисперсійно-коваріаційного на випадок зміщеності прогнозів.

Розглянемо дисперсійно-коваріаційний метод.

Нехай існує два незмішаних прогнози на період t: F1t та F2t. Нехай також дисперсії прогнозів

21 та
22, коваріація
12. Новий незміщенний прогноз будується за правилом:

. (2.1)

прогнозування модель динаміка господарський

Дисперсія похибки становитиме:

. (2.2)

Мінімізуючи вираз по

, отримуємо:

. (2.3)

Звідси:

, (2.4)

Де:

. (2.5)

Оскільки

та
, то комбінований прогноз є не гіршим, ніж найкращий з двох прогнозів.

На практиці часто значення дисперсій та коваріацій похибок прогнозу є невідомими, тому замість них використовують їх оцінки. Таким чином обираються ваги для побудови нового комбінованого прогнозу.