Смекни!
smekni.com

Производственная линия с пунктами технического контроля и настройки (стр. 1 из 3)

Министерство образования и науки Российской Федерации

ФИЛИАЛ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«БАЙКАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ЭКОНОМИКИ И ПРАВА» В Г.УСТЬ-ИЛИМСКЕ

(Филиал ГОУ ВПО в г. Усть-Илимске)

Кафедра Технологии и Механизации Производства

Специальность 230103 Автоматизированные системы обработки информации и управления (по отраслям)

КУРСОВАЯ РАБОТА

ПО ДИСЦЕПЛИНЕ «ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ»

Производственная линия с пунктами технического контроля и

настройки

РуководительДоцент Г.П. Куклин ИсполнительСтудент гр. АИ-08В.C. Михайлов

Усть-Илимск 2011


СОДЕРЖАНИЕ

производственная линия контроль имитационное моделирование

ВВЕДЕНИЕ

1.ОБЩАЯ КЛАССИФИКАЦИЯ ОСНОВНЫХ ВИДОВ МОДЕЛИРОВАНИЯ

1.1Описание компьютерного моделирования

1.2Достоинства имитационного моделирования

2.ОСНОВНЫЕ ЭТАПЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

3.СИСТЕМА ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

3.1Методологические подходы к построению дискретных имитационных моделей

3.2Язык моделирования GPSS

3.3Содержание базовой концепции структуризации языка моделирования GPSS

4.ПОНЯТИЕ СЕТЕВОГО ПЛАНИРОВАНИЯ

4.1Метод оценки и пересмотра планов (PERT)

5.МОДЕЛИРОВАНИЕ В СИСТЕМЕ GPSS

5.1Постановка задачи

5.2Описание модели

5.3Реализация на языке программирования

Реализация на языке программирования

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


ВВЕДЕНИЕ

Имитационное моделирование (от англ. simulation) – это распространенная разновидность аналогового моделирования, реализуемого с помощью набора математических инструментальных средств, специальных имитирующих компьютерных программ и технологий программирования, позволяющих посредством процессов – аналогов провести целенаправленное исследование структуры и функций реального сложного процесса в памяти компьютера в режиме «имитации», выполнить оптимизацию некоторых его параметров.

Имитационной моделью называется специальный программный комплекс, который позволяет имитировать деятельность какого – либо сложного объекта. Он запускает в компьютере параллельные взаимодействующие вычислительные процессы, которые являются по своим временным параметрам (с точностью до масштабов времени и пространства) аналогами исследуемых процессов.

Следует отметить, что любое моделирование имеет в своей методологической основе элементы имитации реальности с помощью, какой – либо символики (математики) или аналогов.

Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки [1, стр. 5].

Имитационная модель должна отражать большое число параметров, логику и закономерности поведения моделируемого объекта во времени (временная динамика) и в пространстве (пространственная динамика).

Имитационное моделирование экономических процессов обычно применяется в двух случаях:

1. Для управления сложным бизнес – процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства в контуре адаптивной системы управления, создаваемой на основе информационных технологий;

2. При проведении экспериментов с дискретно – непрерывными моделями сложных экономических объектов для получения и отслеживания их динамики в экстренных ситуациях, связанных с рисками, натурное моделирование которых нежелательно или невозможно.

Имитационная модель отображает стохастический процесс смены дискретных состояний системы массового обслуживания (СМО) в непрерывном времени в форме моделирующего алгоритма. При его реализации на ЭВМ производится накопление статистических данных по тем атрибутам модели, характеристики которых являются предметом исследований. По окончании моделирования накопленная статистика обрабатывается, и результаты моделирования получаются в виде выборочных распределений исследуемых величин или их выборочных моментов. Таким образом, при имитационном моделировании систем массового обслуживания речь всегда идет о статистическом имитационном моделировании.

Одним из наиболее эффективных и распространенных языков моделирования сложных дискретных систем является в настоящее время язык GPSS.

Имитационное моделирование является одним из мощнейших методов анализа экономических систем.

Целью данного курсового проекта является закрепление теоретических знаний в области методологии системного моделирования и практическое освоение технологии имитационного моделирования.


1. ОБЩАЯ КЛАССИФИКАЦИЯ ОСНОВНЫХ ВИДОВ МОДЕЛИРОВАНИЯ

Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

В процессе моделирования всегда существует оригинал (объект) и модель, которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Моделирование появилось в человеческой деятельности со времен наскальной живописи и сооружения идолов, т.е. как только человечество стало стремиться к пониманию окружающей действительности; – исейчас, по-существу, прогресс науки и техники находит свое наиболее точное выражение в развитии способности человека создавать модели объектов и понятий.

Общая классификация основных видов моделирования:

1. Концептуальное моделирование – представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков;

2. Физическое моделирование – моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических явлений;

3. Структурно – функциональное – моделями являются схемы (блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;

4. Математическое (логико-математическое) моделирование – построение модели осуществляется средствами математики и логики;

5. Имитационное (программное) моделирование– при котором логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все из перечисленных видов моделирования или отдельные приемы) [3, стр. 11].

1.1. Описание компьютерного моделирования

Компьютерное моделирование – метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

К компьютерному моделированию относят:

1. Структурно-функциональное;

2. Имитационное.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель.

Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

1. Непрерывные;

2. Дискретные;

3. Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

В аналитических моделях поведение реальных процессов и систем (РПС) задается в виде явных функциональных зависимостей (уравнений линейных или нелинейных, дифференциальных или интегральных, систем этих уравнений). Однако получить эти зависимости удается только для сравнительно простых РПС. Когда явления сложны и многообразны исследователю приходится идти на упрощенные представления сложных РПС. В результате аналитическая модель становится слишком грубым приближением к действительности. Если все же для сложных РПС удается получить аналитические модели, то зачастую они превращаются в трудно разрешимую проблему. Поэтому исследователь вынужден часто использовать имитационное моделирование.