Методы целевого программирования;
Методы, основанные на отыскании компромиссного решения;
Методы, в основе которых лежат человеко-машинные процедуры принятия решений (интерактивное программирование).
Для ряда из вышеперечисленных методов вводится понятие функции предпочтения (полезности). С помощью функции предпочтения проблема сравнения совокупности чисел-значений, принимаемых показателями эффективности, сводится к сравнению чисел-значений, принимаемых функцией предпочтения. При этом ЛПР считает, что один набор значений локальных критериев предпочтительнее другого, если ему соответствует большее значение функции предпочтения. Кратко охарактеризуем упомянутые методы векторной оптимизации.
А. В методах, основанных на свертывании системы показателей эффективности, из локальных критериев формируется один. Наиболее распространенным является метод линейной комбинации локальных (частных) критериев.
Пусть рассматриваемая экономическая система характеризуется набором локальных критериев (целевых функций)
В этом случае функция предпочтения
и задача векторной оптимизации сводится к задаче скалярной оптимизации, рассмотренной ранее. При решении данной задачи учитывается система функций-ограничений для каждой из целевых функций
К этой же группе методов относятся методы, в которых используется среднестепенная функция предпочтения вида:
где параметр
оптимальность парето векторный многокритериальный
Б. Методы, использующие ограничения на критерии, включают два подхода: метод ведущего критерия и метод последовательных уступок.
В методе ведущего критерия все целевые функции, кроме одной, переводятся в разряд ограничений. Пусть
где
Алгоритм метода последовательных уступок состоит в следующем:
Критерии нумеруются в порядке убывания важности;
Определяется оптимальное значение наиболее важного критерия
Решается задача по критерию
Пункты 2 и 3 повторяются последовательно для критериев
В. При решении задач методами целевого программирования предполагается приближение значения каждого критерия к определенной величине
где
Г. В методах, основанных на отыскании компромиссного решения, используется принцип гарантированного результата. Задача может быть сформулирована следующим образом:
Данным методом могут решаться задачи с заданными приоритетами критериев и многовекторные задачи.
Д. В методах основанных на человеко-машинных процедурах (методы интерактивного программирования) решение задачи происходит в интерактивном режиме. ЛПР оценивает полученное решение и вносит или изменяет заранее заданные коэффициенты или уступки по критериям, а также определяет направление оптимизации. Эта информация служит для постановки новой задачи оптимизации и получения промежуточного решения. Диалог продолжается до тех пор, пока решение не будет удовлетворять требованиям ЛПР. Основным достоинством данного метода является использование знаний и интуиции ЛПР, глубоко понимающего смысл задачи и способного правильно корректировать промежуточные результаты в нужном направлении.
Отметим еще один важный метод агрегирования целевой функции. В некоторых случаях, когда одни частные критерии желательно увеличивать, а другие – уменьшать, может быть использована функция агрегирования в виде отношения одних критериев к другим. При этом первая группа критериев отождествляется с целевым эффектом, а другая – с затратами на его достижение. Результатом агрегирования в этом случае выступает удельная эффективность:
где
Перейдем к рассмотрению информационных технологий решения ряда задач векторной оптимизации. В процессе рассмотрения мы ограничимся наиболее широко используемыми методами. Для решения задач будем использовать процессор электронных таблиц Excel, способный достаточно просто и эффективно решать задачи подобного рода.
Пример 1. Свертывание системы показателей эффективности.
Рассмотрим следующую задачу векторной оптимизации:
где целевые функции и соответствующие им ограничения имеют вид:
Решим задачу в Excel и проанализируем зависимость получаемого решения от значения коэффициентов
Внесем данные на рабочий лист в соответствии с Рис. 5.1. Под значения переменных отведем ячейки A16:C16. В ячейки A6:A8 и A10:A12 введем формулы, определяющие ограничения на значения переменных, в ячейки E16 и G16 – формулы для расчета соответствующих целевых функций, в ячейку F20 – формулу для расчета функции
Чрезвычайно важным является использование в данном методе общей для всех функций системы ограничений.
Рис. 1. Данные для решения примера 1
Вызовем Поиск решения и зададим область изменения переменных, целевую ячейку и систему ограничений стандартным образом. В результате получим ответ: (для данных значений параметров