2. Рассчитайте средние коэффициенты эластичности.
3. Определите парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделайте выводы о силе связи результата и факторов.
4. Дайте оценку полученного уравнения на основе общего F-критерия Фишера.
5. Оцените качество уравнения через среднюю ошибку аппроксимации.
6. Рассчитайте прогнозное значение результата, если прогнозные значения факторов составляют 80% от их максимальных значений.
7. Оцените полученные результаты, выводы оформите в аналитической записке.
Решение.
Построение линейной множественной регрессии сводится к оценке ее параметров – а, b1 и b2. Для расчета параметров а, b1 и b2 уравнения регрессии
По исходным данным произведем расчет предварительных параметров (табл. 4.1)
Таблица 4.1
№ | У | Х1 | Х2 | Х12 | Х22 | Х1·Х2 | У·Х1 | У·Х2 | ŷ |
1 | 203 | 118 | 105 | 13924,00 | 11025,00 | 12390,00 | 23954,00 | 21315,00 | 197,29 |
2 | 63 | 28 | 56 | 784,00 | 3136,00 | 1568,00 | 1764,00 | 3528,00 | 80,63 |
3 | 45 | 17 | 54 | 289,00 | 2916,00 | 918,00 | 765,00 | 2430,00 | 73,07 |
4 | 113 | 50 | 63 | 2500,00 | 3969,00 | 3150,00 | 5650,00 | 7119,00 | 100,80 |
5 | 121 | 56 | 28 | 3136,00 | 784,00 | 1568,00 | 6776,00 | 3388,00 | 44,39 |
6 | 88 | 102 | 50 | 10404,00 | 2500,00 | 5100,00 | 8976,00 | 4400,00 | 98,90 |
7 | 110 | 116 | 54 | 13456,00 | 2916,00 | 6264,00 | 12760,00 | 5940,00 | 110,97 |
8 | 56 | 124 | 42 | 15376,00 | 1764,00 | 5208,00 | 6944,00 | 2352,00 | 93,91 |
9 | 80 | 114 | 36 | 12996,00 | 1296,00 | 4104,00 | 9120,00 | 2880,00 | 80,01 |
10 | 237 | 154 | 106 | 23716,00 | 11236,00 | 16324,00 | 36498,00 | 25122,00 | 212,75 |
11 | 160 | 115 | 88 | 13225,00 | 7744,00 | 10120,00 | 18400,00 | 14080,00 | 167,62 |
12 | 75 | 98 | 46 | 9604,00 | 2116,00 | 4508,00 | 7350,00 | 3450,00 | 90,66 |
Итого: | 1351,00 | 1092,0 | 728,0 | 119410,0 | 51402,0 | 71222,0 | 138957,0 | 96004,0 | 1351,00 |
Систему линейных уравнений удобно решать методом Крамера (метод определителей):
частный определитель параметра а.
частный определитель параметра х1.
частный определитель параметра х2.
Теперь произведем расчет коэффициентов множественной регрессии:
Аналогичные результаты можно получить с помощью автоматической процедуры нахождения параметров «Анализ данных» → «Регрессия» MS Excel уравнения множественной регрессии:
Окончательно уравнение множественной регрессии, связывающее валовой доход за год (у) со средней стоимостью основных фондов (х1) и со средней стоимостью оборотных средств (х2) имеет вид:
Анализ данного уравнения позволяет сделать выводы – с увеличением среднегодовой стоимости основных фондов на 1 млн. руб. размер валового дохода возрастет в среднем на 380 тыс. руб., при том же стоимости оборотных средств. Увеличение среднегодовой стоимости оборотных средств на 1 млн. руб. при той же стоимости основных фондов предполагает дополнительное увеличение валового дохода за год на 1,68 млн. руб.
Для оценки статистической значимости коэффициентов регрессии рассчитываются t-критерий Стьюдента и доверительные интервалы для каждого из них. Выдвигается гипотеза H0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки по формулам:
Где случайные ошибки параметров линейной регрессии определяются следующим образом:
совокупный коэффициент множественной корреляции;
определитель матрицы парных коэффициентов корреляции;
определитель матрицы межфакторной корреляции. Как видно, величина множественного коэффициента корреляции зависит не только от корреляции результата с каждым их факторов, но и от межфакторной корреляции. Парный коэффициент корреляции между у и х1 рассчитывается по формуле:
Произведем расчет необходимых параметров в таблице 4.2
Таблица 4.2
№ | У | Х1 | | | | | |
1 | 203,0 | 118,0 | 90,4 | 27,0 | 2441,25 | 8175,17 | 729,00 |
2 | 63,0 | 28,0 | -49,6 | -63,0 | 3123,75 | 2458,51 | 3969,00 |
3 | 45,0 | 17,0 | -67,6 | -74,0 | 5001,17 | 4567,51 | 5476,00 |
4 | 113,0 | 50,0 | 0,4 | -41,0 | -17,08 | 0,17 | 1681,00 |
5 | 121,0 | 56,0 | 8,4 | -35,0 | -294,58 | 70,84 | 1225,00 |
6 | 88,0 | 102,0 | -24,6 | 11,0 | -270,42 | 604,34 | 121,00 |
7 | 110,0 | 116,0 | -2,6 | 25,0 | -64,58 | 6,67 | 625,00 |
8 | 56,0 | 124,0 | -56,6 | 33,0 | -1867,25 | 3201,67 | 1089,00 |
9 | 80,0 | 114,0 | -32,6 | 23,0 | -749,42 | 1061,67 | 529,00 |
10 | 237,0 | 154,0 | 124,4 | 63,0 | 7838,25 | 15479,51 | 3969,00 |
11 | 160,0 | 115,0 | 47,4 | 24,0 | 1138,00 | 2248,34 | 576,00 |
12 | 75,0 | 98,0 | -37,6 | 7,0 | -263,08 | 1412,51 | 49,00 |
Итого | 1351,00 | 1092,00 | 16016,00 | 39286,92 | 20038,00 | ||
Среднее значение | 112,6 | 91,0 |
Тогда коэффициент корреляции между у и х1 составит:
Парный коэффициент корреляции между у и х2 рассчитывается по формуле:
Произведем расчет необходимых параметров в таблице 4.3
Таблица 4.3
№ | У | Х2 | | | | | |
1 | 203,0 | 105,0 | 90,4 | 44,3 | 4008,47 | 8175,17 | 1965,44 |
2 | 63,0 | 56,0 | -49,6 | -4,7 | 231,39 | 2458,51 | 21,78 |
3 | 45,0 | 54,0 | -67,6 | -6,7 | 450,56 | 4567,51 | 44,44 |
4 | 113,0 | 63,0 | 0,4 | 2,3 | 0,97 | 0,17 | 5,44 |
5 | 121,0 | 28,0 | 8,4 | -32,7 | -274,94 | 70,84 | 1067,11 |
6 | 88,0 | 50,0 | -24,6 | -10,7 | 262,22 | 604,34 | 113,78 |
7 | 110,0 | 54,0 | -2,6 | -6,7 | 17,22 | 6,67 | 44,44 |
8 | 56,0 | 42,0 | -56,6 | -18,7 | 1056,22 | 3201,67 | 348,44 |
9 | 80,0 | 36,0 | -32,6 | -24,7 | 803,72 | 1061,67 | 608,44 |
10 | 237,0 | 106,0 | 124,4 | 45,3 | 5640,22 | 15479,51 | 2055,11 |
11 | 160,0 | 88,0 | 47,4 | 27,3 | 1296,06 | 2248,34 | 747,11 |
12 | 75,0 | 46,0 | -37,6 | -14,7 | 551,22 | 1412,51 | 215,11 |
Итого | 1351,00 | 728,00 | 14043,33 | 39286,92 | 7236,67 | ||
Среднее значение | 112,6 | 60,7 |
Тогда коэффициент корреляции между у и х2 составит: