Зокрема, випадковий процес з дискретним часом називають простим стаціонарним марківським процесом, багатовимірна щільність розподілу ймовірностей якого визначається одновимірною щільністю ймовірностей та щільністю ймовірностей переходів
. (26)Співвідношення (26) визначає марківську властивість випадкового процесу.
Для описування реальних процесів у системах зв'язку використовується також математична модель у вигляді марківських ланцюгів - випадкових процесів з дикретним часом, що приймають зчисленну множину значень. При цьому замість щільності ймовірності, притаманної для марківського процесу, основні характеристики процесу описуються ймовірностями відповідних подій. Марківська властивість для таких процесів описується співвідношенням
, (27)де
.Марківські ланцюги можуть бути використані для математичного опису джерела дискретних, зокрема, телеграфних повідомлень, а також процесів обслуговуванння у системах комутації.
Лінійні випадкові процеси. Існують різні означення лінійних випадкових процесів. Розглянемо одне із них, що основане на інтегральному зображенні
, (28)де
- імпульсна характеристика лінійного фільтру; - білий шум.Тут лінійний процес
розглядається як перетворення білого шуму лінійним фільтром з імпульсною характеристикою . При цьому можуть бути одержані лінійні процеси з різними ймовірнісними характеристиками, які визначаються видом функції , а також видом білого шуму. Зокрема, білий шум може бути гаусовим, пуасоновим, їх сумішшю або іншими білими шумами. Лінійний фільтр у виразі (28) має назву формуючого фільтра, а білий шум - породного процесу.Для лінійних процесів з дискретним часом математична модель визначається відповідним співвідношенням (29)де
- дискретні відліки імпульсної характеристики фільтру, - білий шум з дискретним часом.Лінійний процес можна також зобразити у виді авторегресії на минулі значення. При цьому можна одержати процеси авторегресії, ковзного середнього та змішані процеси авторегресії та ковзного середнього. Зокрема, процес авторегресії
-го порядку описується рівняннямЛінійні процеси можуть бути використані як математичні моделі, зокрема, при описі джерела мовних повідомлень, кодера мовних повідомлень, джерела корельованих завад.
Існує також багато інших математичних моделей, що мають свої характерні властивості і дають можливість враховувати особливості різних фізичних процесів в системах зв'язку при їх моделювані на ЕОМ. Зокрема, це математичні моделі, що описують негаусів характер сигналів за допомогою сумішей розподілу, сукупності моментних та кумулянтних функцій, а також нестаціонарний характер сигналів - за допомогою періодично-корельованих випадкових процесів.
Систематизований опис різних ймовірносних моделей приведений у роботах. Деякі специфічні математичні моделі сигналів описані у наступному розділі, де розглядається алгоритми моделювання на ЕОМ різних випадкових елементів - випадкових величин, векторів та випадкових процесів.