Во второй колонке осуществляется преобразование соответствующего исходного суждения CT‑замыкания так, что в рассматриваемой строке субъект суждения будет тем же самым, а предикатами суждения будут все термины из T, которые отсутствуют в исходном суждении. Например, если исходной была строка A®(B, C), то во второй колонке записывается строка A®( A,
, , ), в которой будут все термины из T, исключая B и C. Очевидно, что суждения, представленные этой строкой (A® A, A® , A® , A® ), в CT‑замыкании не содержатся. Некоторые из этих суждений (например, A® ) можно исключить сразу же без проверки на корректность.В третьей колонке записывается результат, полученный во второй колонке, но при этом из числа предикатов исключается термин, который в данной строке является субъектом, и термин, который является отрицанием субъекта. Эти результаты заносятся в третью колонку таблицы. Таким образом, из возможных кандидатов в корректные гипотезы сразу же исключаются суждения типа X®X и X®
. Первое суждение утверждает, что каждое множество включено в самого себя, что является аксиомой, а второе подразумевает элементарную коллизию парадокса и поэтому не является корректным.В четвертой колонке воспроизводятся записи третьей колонки, но при этом из правой части этих записей исключаются предикаты, образующие в совокупности с субъектом суждения, обратные тем, которые содержатся в CT-замыкании. Например, во второй строке из записи B®(A,
, ) мы исключили из правой части термин A, так как его присутствие подразумевает, что нам придется проверять суждение B®A, хотя в CT‑замыкании имеется обратное ему суждение A®B. Как уже известно, совмещение прямого и обратного суждения в одной E-структуре приводит к появлению элементарного цикла между двумя литералами.В результате оказывается, что предстоит проверить 12 элементарных суждений – по два суждения в каждой строке. Рассмотрим в качестве примера первую строку A®(
, ), в которой содержатся два элементарных суждения A® и A® . Вначале воспроизведем диаграмму Хассе нашей исходной системы (рис. 3) и добавим к этой системе первое проверяемое суждение (рис. 4). Теперь достаточно посмотреть на рисунок, чтобы убедиться, что новая система содержит коллизию парадокса A® , поскольку из A есть путь в . Тот же результат мы получим, если в исходную систему добавим второе проверяемое суждение (рис. 5).Рис. 3 Рис. 4 Рис. 5
При проверке всех остальных элементарных суждений из четвертой колонки нашей таблицы оказывается, что все они инициируют коллизию парадокса. Таким образом, в исходную систему невозможно добавить какую-либо посылку, содержащую только базовые термины, чтобы при этом не возникало никаких коллизий. Системы с таким свойством мы в дальнейшем будем называть насыщенными системами. При этом "насыщенность" системы не означает, что в нее вообще нельзя ничего добавлять. Как было показано ранее, к указанным системам можно добавлять без коллизий сколько угодно экзистенциальных суждений.
Проверку корректности гипотезы, содержащей только базовые литералы, можно упростить, если воспользоваться соотношением, выраженным следующей теоремой. Но сначала необходимо определить еще одну операцию (инверсию), которая часто используется в E‑структурах .
Инверсией (Inv(S)) произвольного множества S литералов является множество литералов такое, что каждому литералу LiÎS ставится в соответствие литерал
Î Inv(S).Другими словами, для выполнения инверсии в множестве литералов мы вместо каждого литерала из этого множества записываем его дополнение. Так, если S = {A,
, C}, то Inv(S) = { , B, }. Инверсия обладает некоторыми интересными свойствами. В частности, нетрудно проверить, что при двукратном применении инверсии к определенному множеству литералов будет получено то же самое множество, т.е. Inv(Inv(S)) = S.Теорема. Новое базовое суждение A®B является корректной гипотезой в корректной E‑структуре G, если совместно соблюдаются два равенства:
AÑÇBD = Æ;
AÑÇInv(BD) = Æ.
Доказательство. Предположим, что AÑÇBD¹Æ. Это означает, что существует некоторый литерал W, который одновременно принадлежит и AÑ, и BD. Отсюда следует, что W является предшественником литерала A и потомком литерала B. Поэтому, когда литералы A и B соединяются дугой A®B (т.е. мы добавляем гипотезу в структуру), то получается, что через литералы A и B существует путь из W в W, что означает коллизию цикла. Таким образом, необходимость условия (i) доказана. Предположим, что AÑÇInv(BD) ¹Æ. Это означает, что существует литерал W, такой, что W является предшественником A, а
– потомком литерала B. Тогда при добавлении гипотезы A®B в структуру появляется путь из W в , что означает коллизию парадокса. Таким образом, необходимость условия (ii) доказана. Конец доказательства.Из доказательства теоремы ясно, что в структуре имеется коллизия цикла в том случае, когда не соблюдается условие (i), а коллизия парадокса, - когда не соблюдается условие (ii).
Рассмотрим, как можно использовать теорему 5 для решения предыдущей задачи. Предположим, нам надо проверить корректность гипотезы B®
. Строим для этих литералов соответствующие конусы:BÑ={A, B};
D = { , , }; Inv( D) = {A, B, C}.Проверяем условия теоремы 5: BÑÇ
D = Æ; BÑÇ Inv( D) = {A, B}.Отсюда следует, что при добавлении гипотезы B®
в структуру коллизии цикла не образуется, зато появляется коллизия парадокса.Проверка насыщенности даже простой системы является весьма трудоемким занятием и здесь целесообразно воспользоваться вычислительными возможностями компьютера. Однако имеются классы E-структур, насыщенность которых легко распознается без нудного перебора. К этому классу относятся, в частности, все E-структуры, у которых диаграмма Хассе содержит две не пересекающиеся друг с другом максимальные цепи, т.е. пути, началом которых являются минимальные элементы структуры. Например, если мы построим диаграмму Хассе какой-то E-структуры и увидим такую картинку (рис. 6), то можем смело без всяких проверок утверждать, что эта система является насыщенной.
Рис. 6
Нетрудно убедиться, что к данному структурному классу относится также и система, насыщенность которой мы только что проверили методом перебора. К этому классу относятся почти все примеры полисиллогизмов, приводимые в учебниках по логике. Вместе с тем, этот класс является всего лишь частным случаем E‑структур и соответствующих им рассуждений, т.е. возможны классы E-структур, у которых схемы будут более запутанными. Далее будут рассмотрены E‑структуры, для которых проверка насыщенности не является такой простой процедурой. Приведем определения и соотношения, которые после предшествовавшего анализа будут более понятными.
Для заданной E-структуры любое суждение, содержащее только пару различных базовых терминов этой E-структуры и не содержащееся в ее CT-замыкании, называется базовым невыводимым суждением.
E-структура является насыщенной, если добавление в нее любого базового невыводимого суждения вызывает коллизии парадокса или цикла. В противном случае такая структура является ненасыщенной.
Для ненасыщенных E-структур любое ее базовое невыводимое суждение, не вызывающее в этой E-структуре каких-либо коллизий, называется базовой корректной гипотезой этой E-структуры.