Рис. 5.7. Кривые безразличия
Данный тип кривой (Рис. 5.7.)присущ товарам-субститутам, причём, абсолютным. Это значит, что увеличение спроса на одно из двух благ (товаров) сопровождается падением спроса на другое благо: эти два блага находятся в отношениях взаимозаменяемости. В качестве примера можно привести кофе и чай.
Касательно последнего свойства кривой безразличия – при замене строгого неравенства на нестрогое в условии вогнутости функции приходим к понятию вогнутой линейной функции.
Рис.5.8. Кривые безразличия
Тип этих кривых (Рис. 5.8.), строго говоря, является одним из смешанных, так как существует ещё тип кривых безразличия для комплементарных товаров (благ). При увеличении спроса на одно из двух таких благ растет спрос и на второе благо: они находятся в отношениях взаимодополнения. Например, кофе и сахар.
Рассмотрим наборы только из двух товаров Cи U. (Товары Cи Uможно рассматривать как комбинированные товары).
Отношения предпочтения, характерные для каждого индивида, отражают посредством кривой безразличия (рис.5.9.).
Кривая безразличия отражает множество точек, каждая из которых представляет собой такой набор из двух товаров, что потребителю безразлично, какой из этих наборов выбрать. Наборы А и В с точки зрения данного потребления равноценны и лежат на одной и той же кривой безразличия. Для нашего потребителя любой набор, лежащий на кривой II, предпочтительнее любого набора, лежащего на кривой I и т.д.
Рис. 5.9. Кривые безразличия
В зависимости от функций полезности различают следующие типы кривых безразличия:
1). Функция полезности с полным взаимозамещением благ (чай и кофе) имеет вид:
,
гдеa,b – параметры;
U – полезность;
X,Y – товары.
Из функции полезности можно найти Y :
и построить кривые безразличия линейного типа (рис. 5.10.).
Рис. 5.10. Кривые безразличия линейного типа
2).Неоклассическая функция полезности имеет вид:
, где a+b£ 1Чтобы построить кривые безразличия необходимо найти Y:
Рис. 5.11. Кривые безразличия неоклассического типа
3) Функции с полным взаимодополнением благ (при увеличении спроса на одно из двух благ растет спрос и на второе благо, например, сахар и чай, бензин и моторное масло) имеют кривые безразличия в виде точки на пересечении двух прямых. Избыток одного блага не имеет значения. Полезность достигается лишь при определенной комбинации обеих благ.
математическая модель потребительский спрос
Рис. 5.12. Кривые безразличия функций с полным взаимодополнением благ
Основными понятиями теории потребления являются предельная полезность и предельная норма замещения. Пусть U(Y1, Y2) —функция полезности. Достигаемый при фиксированном уровне потребления первого блага и незначительном изменении уровня потребления второго блага прирост функции полезности называется предельной полезностью (marginalutility) второго блага. То есть предельная полезность – полезность, получаемая от потребления дополнительной единицы блага.
Величина, определяющая наклон кривой безразличия, называется предельной нормой замещения (marginalrateofsubstitution; MRS) потребительских благ. Она показывает, в какой степени потребитель готов заменить один товар другим, чтобы получить при этом ту же общую полезность.
Другими словами, предельной нормой замещения блага X блага Y (MRSxy) называют количество блага Y, которое должно быть сокращено «в обмен» на увеличение количества блага X на единицу, с тем чтобы уровень удовлетворения потребителя остался неизменным:
при условии, чтоU= const
Согласно аксиоме ненасыщения, любая точка, лежащая выше кривой безразличия, всегда более предпочтительна для потребителя, обладая большей общей полезностью. А любая точка, лежащая ниже, кривой безразличия, соответственно, менее предпочтительна для потребителя.
Если использовать функцию полезности неоклассического типа, то можно убедиться в существовании закона убывающей предельной нормы замещения. Этот закон явился результатом интерпретации закона убывающей предельной полезности с позиций теории выбора (теории порядковой полезности, ординалистского подхода) и считается одной из центральных идей современной микроэкономической теории. Закон убывающей предельной нормы замещения может быть сформулирован следующим образом: при стремлении поддерживать неизменным уровень полезности путем замещения первого блага вторым субъективное удовлетворение, получаемое от предельного потребления первого блага, в сравнении с удовлетворением, получаемым от предельного потребления второго блага, будет неуклонно уменьшаться.
Естественно потребитель стремится приобрести товарный набор, принадлежащий наиболее удаленной от начала координат кривой безразличия. Однако, это не всегда возможно, т.к. потребительское поведение ограничивается средствами, которыми он располагает.
Если обозначать рыночные цены блага X через Рх, а блага Y через Py, а его доход через I, то бюджетное ограничение потребителя можно записать в виде уравнения:
.Доход потребителя равен сумме его расходов на покупку товаров X и Y.
Преобразуем уравнение и получим уравнение бюджетной линии, которая имеет вид прямой линии (рис. 5.13.). Чем выше доход, тем дальше от начала координат находится линия бюджетного ограничения.
Рис. 5.13. Бюджетная линия
Пусть задана линия бюджетного ограничения и несколько кривых безразличия. Какой товарный набор выбирает потребитель?
Рис. 5.14. Оптимальный выбор потребителя
Оптимум потребителя будет в точке С. В рамках бюджетного ограничения индивид постарается так распределить свой доход между различными благами, чтобы максимизировать полезность U. Соответствующий набор благ называется оптимальным планом потребления и обычно обозначается точкой касания бюджетной линии и кривой безразличия. Итак, в условиях, когда рыночные цены и доход индивида заданы извне, оптимальный план потребления индивида определяется на основе принципа максимизации полезности. Оптимальный план потребления изменяется в зависимости от цен и дохода (рис. 5.14.).
В точке оптимума выполняется равенство:
Соотношение цены блага X к цене блага Y равно предельной норме замещения блага X блага Y.
В общем случае рассмотрим потребителя (группу семей) с определенным доходом I, предназначенным для приобретения набора товаров X=(x1 ,..., xj ,..., xn), цены которых соответственно равны P=(p1 ,..., pj ,..., pn).
Здесь X,P – неотрицательные векторы.
Ограниченность возможного выбора потребителя выражается с помощью бюджетного ограничения
Постановка задачи оптимального выбора потребителя может быть сформулирована двояко: а) в терминах отношения предпочтения: наилучшим (оптимальным) считается набор , который является «наиболее предпочтительным по отношению «=
« среди всех неотрицательных векторов x, удовлетворяющих бюджетному ограничению. Наиболее предпочтительным на множестве R обычно называется набор , обладающий тем свойством, что он удовлетворяет условию«
= x» для всех x Î RОчевидно, что единственность такого набора, вообще говоря, не обеспечена,