Для перетворення цих сум у відповідні дисперсії необхідно їх поділити на відповідні кількості ступенів волі, результати чого представлено в табл. 2, яку називають таблицею однофакторного дисперсійного аналізу.
Таблица 2
Компонента | Сума квадратів | Число ступенів волі | Дисперсія |
Факторна | | | |
Залишкова | | | |
Повна | | | |
Для того, щоб перевірити тепер нульову гіпотезу про рівність математичних сподівань за рівнями фактора
Для цього проведемо розрахунок статистики критерію
і порівняємо її з критичною точкою при рівні значущості
Якщо
то нульову гіпотезу приймають, тобто при заданому рівні значущості
Якщо
то вплив фактора
Отже, метод дисперсійного аналізу складається в перевірці нульової гіпотези про рівність групових середніх нормальних сукупностей з однаковими дисперсіями. Для цього досить перевірити за критерієм
2 Поняття про кореляцію і регресію
Оцінка залежності між випадковими величинами та поява можливості прогнозувати при цьому значення однієї випадкової величини за значеннями іншої випадкової величини є важливою проблемою статистичного аналізу.
2.1 Функціональна, статистична і кореляційна залежності
Дві випадкові величини можуть бути незалежними або пов'язаними між собою визначеною функціональною залежністю, або залежністю особливого типу, що називається статистичною (стохастичною).
Статистичною називають залежність, при якій зміна однієї з випадкових величин спричиняє зміну розподілу іншої випадкової величини. Статистична залежність виявляється зокрема в тому, що при зміні однієї з величин змінюється середнє значення іншої; при цьому статистичну залежність називають кореляційною.
Прикладом такої кореляційної залежності є зв'язок між внесеними в землю добривами і отриманим врожаєм зерна. Відомо, що твердого функціонального зв'язку між цими величинами немає у зв'язку з впливом безлічі випадкових факторів (опади, температура повітря й ін.). Однак досвід свідчить, що зміна кількості внесених добрив змінює середню врожайність.
2.2 Умовне математичне сподівання, коефіцієнт кореляції і регресія двовимірної випадкової величини в теорії ймовірностей
У теорії ймовірностей при описі системи двох випадкових величин
де