МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
им. А.Н. Туполева
Расчетно-графическая работа
по дисциплине
«Разработка производственных и управленческих решений»
Вариант 17
Выполнил: ст. гр. 21404
Овчинникова О.В.
Проверил: Гашева М.В.
Чистополь 2009
Решение задачи симплексным методом
Симплекс метод- это метод упорядочивания перебора опорных планов, упорядочивание в данном случае обеспечение последовательным перебором опорных планов с монотонным изменением значения целевой функции в сторону возрастания(убывания).
Исходные данные:
Предприятие занимается производством 2 видов продукции 1 и 2, для их производства требуется 3 вида сырья. На изготовление единицы изделия 1 требуется сырья каждого вида
кг, а для изделия 2- кг. Стоимость единицы изделия 1 - , а для 2- т.р. Необходимо составить такой план производства изделий, при котором прибыль от производства и реализации данной продукции будет максимальной. На предприятии имеется сырья в количестве .606 | 802 | 840 | 9 | 15 | 15 | 27 | 15 | 3 | 5 | 6 |
Решение:
Составим экономико-математическую модель задачи. Для этого обозначим
- количество изделий А. - количество изделий В. Эта задача является задачей оптимального использования сырья, поэтому система организации имеет вид: + ≤606 9 +27 ≤60615
+15 ≤802 (1)15
+3 ≤840Где справа стоит количество каждого вида сырья, которые не может быть превышено в процессе производства изделий.
≥0, ≥0 (2)Целевая функция представляет собой общую стоимость произведенной продукции.
С=5
+6х2 => макс. (3)Для решения задач симплекс методом приводят ее к каноническому виду, введя дополнительные балансовые переменные х3,х4,х5, которые означают остатки сырья соответственно 1,2, 3 типов, при этом неравенство преобразуется в уравнение, т.е. левая часть сбалансирована с правой.
9
+27 + х3 ≤60615
+15 + х4 ≤802 (4)15
+3 +х5 ≤840х3, х4, х5- остатки 1,2,3 вида сырья.
х1,х2,х3,х4,х5 ≥ 0 (5)
С=5
+6х2 +0х3+0х4+0х5 => макс. (6)Систему (4) можно записать в другом виде:
р1х1+р2х2+р3х3+р4х4+р5х5=р0
р1 р2 р3 р4 р5 р0
Здесь векторы р3р4р5 имеют предпочтительный вид, т.е являются единичными в одном из компонентов и нулевыми во всех остальных компонентах. Р0- называется столбцом свободных членов системы ограничений, для решения системы (4)-(6) симплекс методом необходимо иметь опорный план, т.е. допускаются решения системы (4), для этого надо разделить на 2 группы- базисные и свободные. Сначала выбираем базисные, в качестве их выбирают векторы, имеющие предпочтительный вид, т.е в данном случае р3р4р5.им соответствуют базисные переменные х3, х4, х5системы (4). Остальные переменные х1,х2- будут свободными, при получении базисного решения все свободные переменные =0. Подставив в (4) х1=х2=0, получаем остальные компоненты опорного плана х3=606, х4=802,х5=840. В векторном виде этот опорный план выглядит так: х0=(0,0,606,802,840). Подставив компоненты х0 в целевую функцию (6) получаем значение целевой функции=0. С (х0)=0.
1 симплексная таблица( опорный план в виде симплекс таблицы)
Оценка базисных переменных | Базисные переменные | Свободные члены | 5 | 6 | 0 | 0 | 0 |
С | Х | Р0 | Р1 | Р2 | Р3 | Р4 | Р5 |
0 | Х3 | 606 | 9 | 27 | 1 | 0 | 0 |
0 | Х4 | 802 | 15 | 15 | 0 | 1 | 0 |
0 | Х5 | 840 | 15 | 3 | 0 | 0 | 1 |
С | 0 | -5 | -6 | 0 | 0 | 0 |
Переход к новому опорному плану, выбор разрешающего столбца:
СК=мин{Сj(cj|<0)}=мин {-5; -6 }=-6=С2=К=2
Выбор разрешающей строки:
bl/ alk=min {bi/ai2(ai2>0)} min{606/27;802/15;840/3}={22;53;280} =22=b1/a12=l=1
Генеральный элемент: alk=а12=27
Переход к новой симплексной таблице:
B1= b1/ а12=606/27=22
c=C-ckbс=c-c2b1=0-(-6)*22=132
alj=alj/alk
9/27=1/3 27/27=1 =1/27 =0/27=0 0/27=0 -5-(-6)*1/3=-3 -6-(-6)*1=0 0-(-6)*1/27=2/9 0-(-6)*0=0 0-(-6)*0=0 =802-15*22=472 =840-3*22=774 15-15*1/3=10