Смекни!
smekni.com

Использование среды MatLAB для решения линейной программы (стр. 2 из 3)

Если к тому же учесть, что число положительных (базисных) компонент опорного плана должно оставаться равным m, то одну из первых m (ненулевых) компонент исходного плана обращаем в нуль выбором


(2.12)

Подставляя (2.11) в (2.1), имеем

(2.13)

Если обозначить

, (2.14)

, (2.15)

то (2.13) примет вид

(16)

Из полученных соотношений напрашиваются следующие выводы.

Критерий 1 (критерий оптимальности).Если все Dk ³ 0, то выбранный план для задачи максимизации является оптимальным.

Критерий 2. Если обнаруживается некоторое Dk < 0 и хотя бы одно из значений Zjk >0, то переход к новому плану увеличит значение целевой функции.

Этот вывод с очевидностью следует из (2.16); в такой ситуации согласно (2.12) полагаем k-ю переменную равной Q и преобразуем значения остальных (базисных) переменных в соответствии с (2.11).

Критерий 3. Если обнаруживается некоторое Dk < 0, но все Zjk£0, то линейная форма задачи не ограничена по максимуму.

Этот вывод следует из того, что согласно (2.11) компоненты нового плана сохраняют неотрицательность при любом Q>0 (в том числе и при сколь угодно большом) и согласно (2.16) появляется возможность неограниченного изменения значения целевой функции.

Предположение о том, что базисными являются первые mкомпонент плана, не является принципиальным, и указание диапазона поj от 1 до m в (2.11)-(2.15) можно заменить на указание о принадлежности к базису “jÎБ“.

Если все опорные планы задачи являются невырожденными (число положительных компонент равно m), то Q отлично от нуля и переход к новому плану согласно (2.16) изменяет значение целевой функции, что гарантирует достижение экстремума за конечное число шагов. При наличии вырожденных планов возможно т. н. зацикливание (возврат к ранее рассмотренным планам), но на практике зацикливание никогда не возникало.

2.2 Прямой алгоритм симплексного метода[1]

Пусть исходная задача приведена к канонической форме и начальный базис образует единичную матрицу. Тогда базисные компоненты опорного плана совпадают с правыми частями ограничений и коэффициенты Zjk разложения вектора Xk по такому базису совпадают с компонентами этого вектора.

Для единообразия описания вычислительной процедуры в дальнейшем будем пользоваться т.н. симплексной таблицей вида:

C Базис План C1 C2 Cm Cm+1 Ck Cn
баз плана X X1 X2 Xm Xm+1 Xk Xn
С1 X1 B1 1 0 0 Z1m+1 Z1k Z1n
С2 X2 B2 0 1 0 Z2m+1 Z2k Z2n
Cm Xm Bm 0 0 1 Zmm+1 Zmk Zmn
Zk L(X) Z1 Z2 Zm Zm+1 Zk Zn
Dk D1 D2 D m D m+1 Dk Dn

В центральной части таблицы записываются коэффициенты при неизвестных в ограничениях, в столбцеX - правая часть ограничений (базисные компоненты плана), в первой строке - коэффициенты линейной формы, во второй строке – переменные, входящие в целевую функцию и систему ограничений. Основное поле симплекс таблицы - коэффициенты при неизвестных в ограничениях. В первом столбце для удобства вычислений будем заносить коэффициенты линейной формы при базисных переменных, указанных во втором столбце (умножение его на столбец X (свободные члены Bi≥0) с суммированием дает значение L(X); аналогичное умножение его на столбец Xk даст Zk). Последняя строка получается вычитанием из предыдущей строки элементов первой строки таблицы и позволяет судить об оптимальности плана.

Т.к. выбор типа искомого экстремума (максимума или минимума) носит относительный характер, то при решении задач максимизации/минимизации в последней строке должны быть только неотрицательные элементы.

Обратим внимание на определение начального опорного плана. Пусть задача приведена к канонической форме и компоненты вектора правой части неотрицательны. Если в системе векторов коэффициентов при переменных (матрице А) обнаруживается подсистема, образующая единичную подматрицу, то эти векторы образуют базис опорного плана и вектор правой части определяет базисные компоненты этого плана.

Если такой единичной подматрицы не обнаруживается, то либо придется перебирать все подсистемы m уравнений с m неизвестными в надежде обнаружить неотрицательные решения, либо прибегнуть к методу искусственного базиса.

В последнем случае в ограничения добавляют неотрицательные, т.н. искусственные переменные так, чтобы возникла единичная подматрица коэффициентов, и эти переменные включают в линейную форму с коэффициентом - М для задачи максимизации, где М>0 - сколь угодно большое число.

Полученная М-задача решается до получения оптимального плана.

Если в оптимальном плане М-задачи значения искусственных переменных равны нулю, то значения остальных компонент образуют оптимальный план исходной задачи.

Если в оптимальном плане М-задачи значение хотя бы одной из искусственных переменных отлично от нуля, то исходная задача не имеет ни одного плана (ее ограничения противоречивы).

Если некоторая задача решается прямым алгоритмом симплексного метода, то решение сопряженной задачи можно видеть в строке Z конечной симплексной таблицы в позициях, соответствующих начальному единичному базису.


3. МЕТОД ГОМОРИ [1]

При решении многих задач (планирование мелкосерийного производства, распределение кораблей по путям сообщения, выработка суждений типа "да-нет" и т.п.) нецелочисленное решение не имеет смысла. Попытка тривиального округления до целых значений приводит либо к нарушению ограничений задачи, либо к недоиспользованию ресурсов. Как мы имели возможность убедиться, для произвольной линейной программы (за исключением программ типа классической транспортной задачи, где коэффициенты матрицы ограничений равны 1 или 0) гарантировать целочисленность решения невозможно.

В случае двухмерной задачи проблема решается относительно просто путем выявления всех целочисленных точек, близких к границе множества планов, построения выпуклого множества планов, содержащего все целочисленные планы и решения задачи над этим множеством.

B общем случае выдвигается идея последовательного отсечения нецелочисленных оптимальных планов: обычным симплексным методом отыскивается оптимальный план и, если он нецелочисленный, строится дополнительное ограничение, отсекающее найденный оптимальный план, но не отсекающее ни одного целочисленного плана.

Эта идея, принадлежащая Д. Данцигу и Р. Гомори, впервые была представлена в форме дополнительного ограничения:

(3.1)

(сумма небазисных компонент оптимального плана должна быть отлична от нуля; хотя бы одна из небазисных компонент должна быть ненулевой). В самом деле, оптимальный план с нулевыми значениями небазисных компонент этому условию не удовлетворяет, что подтверждает отсечение этого плана от исходного множества.

К сожалению, для абсолютного большинства задач скорость сходимости процесса таких отсечений мала. Потому Р. Гомори предложена другая форма дополнительного ограничения. Так, если компонента плана, определяемая k-м уравнением системы ограничений, нецелочисленна, то добавляется ограничение

, (3.2)

где fk - дробная часть компоненты плана (правой части ограничения) и fkj - дробная часть коэффициента при Xj (целая часть числа – наибольшее целое, не превышающее это число; дробная часть числа равна разности между числом и его целой частью), S* - новая дополнительная переменная.

Можно уменьшить объем преобразований, если руководствоваться следующими правилами:

1) выбирать в качестве базового для построения дополнительного ограничения уравнение, определяющее компоненту плана с наибольшей дробной частью;

2) для ввода в базис опорного плана расширенной задачи выбирать переменную, для которой достигается минимум из отношений абсолютных значений D j к значениям fk j ;

3) если одна из ранее введенных дополнительных переменных вошла в базис, ее и соответствующее ей уравнение можно отбросить (эта ситуация связана с появлением более жесткого условия, перекрывающего действие ранее введенного).

Появление дополнительного ограничения и дополнительной переменной вновь приводит к проблеме выбора начального опорного плана расширенной задачи и к использованию с этой целью искусственной переменной. Следует заметить, что если при поиске переменной, исключаемой из базиса, значение Q (определяемое с учетом дополнительного ограничения) соответствует этому ограничению, то можно отказаться от использования искусственной переменной (она все равно выведется из базиса на этом же шаге решения).

Заметим, что для целочисленных программ может обнаружиться отсутствие целочисленных планов (противоречивость ограничений).