Смекни!
smekni.com

Современные эконометрические методы (стр. 7 из 10)

Только через систему образования можно поднять уровень массового применения эконометрики и прикладной статистики и сократить отставание от "переднего края" теории. А это отставание в настоящее время составляет не менее 20 (но и не более 100) лет.


Высокие статистические технологии и эконометрика

В настоящем пункте подробно обсуждается ранее введенное понятие "высокие статистические технологии". Рассматриваются причины широкого распространения устаревших и частично ошибочных "низких" статистических технологий. Показано, что из всех путей повышения качества прикладных статистических исследований наиболее эффективным является расширение обучения "высоким статистическим технологиям", в том числе под именем эконометрики. Описан опыт работы Института высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана.

Термин "высокие технологии" популярен в современной научно-технической литературе. Он используется для обозначения наиболее передовых технологий, опирающихся на последние достижения научно-технического прогресса. Есть такие технологии и среди технологий статистического анализа данных - как в любой интенсивно развивающейся научно-практической области.

Примеры высоких статистических технологий и входящих в них алгоритмов анализа данных, подробный анализ современного состояния и перспектив развития даны выше при обсуждении “точек роста” эконометрики как научно-практической дисциплины. В качестве "высоких статистических технологий" были выделены технологии непараметрического анализа данных; устойчивые (робастные) технологии; технологии, основанные на размножении выборок, на использовании достижений статистики нечисловых данных и статистики интервальных данных.

Термин "высокие статистические технологии". Обсудим пока не вполне привычный термин "высокие статистические технологии". Каждое из трех слов несет свою смысловую нагрузку.

"Высокие", как и в других областях, означает, что статистическая технология опирается на современные достижения статистической теории и практики, в частности, теории вероятностей и прикладной математической статистики. При этом "опирается на современные научные достижения" означает, во-первых, что математическая основа технологии получена сравнительно недавно в рамках соответствующей научной дисциплины, во-вторых, что алгоритмы расчетов разработаны и обоснованы в соответствии в нею (а не являются т.н. "эвристическими"). Со временем, если новые подходы и результаты не заставляют пересмотреть оценку применимости и возможностей технологии, заменить ее на более современную, "высокие статистические технологии" переходят в "классические статистические технологии", такие, как метод наименьших квадратов. Итак, высокие статистические технологии - плоды недавних серьезных научных исследований. Здесь два ключевых понятия - "молодость" технологии (во всяком случае, не старше 50 лет, а лучше - не старше 10 или 30 лет) и опора на "высокую науку".

Термин "статистические" привычен, но разъяснить его нелегко. Во всяком случае, к деятельности Государственного комитета РФ по статистике высокие статистические технологии отношения не имеют. Как известно, сотрудники проф. В.В. Налимова собрали более 200 определений термина "статистика" [44]. Полемика вокруг терминологии иногда принимает весьма острые формы (см., например, редакционные замечания к статье [1], написанные в стиле известных высказываний о генетике и кибернетике конца 1940-х годов). Современное представление о терминологии в области теории вероятностей и математической статистики отражено в Приложении 1 к настоящей книге, подготовленном в противовес распространенным ошибкам и неточностям в этой области. В частности, с точки зрения эконометрики статистические данные – это результаты измерений, наблюдений, испытаний, анализов, опытов, а "статистические технологии" - это технологии анализа статистических данных.

Наконец, редко используемый применительно к статистике термин "технологии". Статистический анализ данных, как правило, включает в себя целый ряд процедур и алгоритмов, выполняемых последовательно, параллельно или по более сложной схеме. В частности, можно выделить следующие этапы:

- планирование статистического исследования;

- организация сбора необходимых статистических данных по оптимальной или хотя бы рациональной программе (планирование выборки, создание организационной структуры и подбор команды эконометриков или статистиков, подготовка кадров, которые будут заниматься сбором данных, а также контролеров данных и т.п.);

- непосредственный сбор данных и их фиксация на тех или иных носителях (с контролем качества сбора и отбраковкой ошибочных данных по соображениям предметной области);

- первичное описание данных (расчет различных выборочных характеристик, функций распределения, непараметрических оценок плотности, построение гистограмм, корреляционных полей, различных таблиц и диаграмм и т.д.),

- оценивание тех или иных числовых или нечисловых характеристик и параметров распределений (например, непараметрическое интервальное оценивание коэффициента вариации или восстановление зависимости между откликом и факторами, т.е. оценивание функции),

- проверка статистических гипотез (иногда их цепочек - после проверки предыдущей гипотезы принимается решение о проверке той или иной последующей гипотезы),

- более углубленное изучение, т.е. применение различных алгоритмов многомерного статистического анализа, алгоритмов диагностики и построения классификации, статистики нечисловых и интервальных данных, анализа временных рядов и др.;

- проверка устойчивости полученных оценок и выводов относительно допустимых отклонений исходных данных и предпосылок используемых вероятностно-статистических моделей, допустимых преобразований шкал измерения, в частности, изучение свойств оценок методом размножения выборок;

- применение полученных статистических результатов в прикладных целях (например, для диагностики конкретных материалов, построения прогнозов, выбора инвестиционного проекта из предложенных вариантов, нахождения оптимальных режима осуществления технологического процесса, подведения итогов испытаний образцов технических устройств и др.),

- составление итоговых отчетов, в частности, предназначенных для тех, кто не является специалистами в эконометрических и статистических методах анализа данных, в том числе для руководства - "лиц, принимающих решения".

Возможны и иные структуризации статистических технологий. Важно подчеркнуть, что квалифицированное и результативное применение статистических методов - это отнюдь не проверка одной отдельно взятой статистической гипотезы или оценка параметров одного заданного распределения из фиксированного семейства. Подобного рода операции - только отдельные кирпичики, из которых складывается здание статистической технологии. Между тем учебники и монографии по статистике обычно рассказывают об отдельных кирпичиках, но не обсуждают проблемы их организации в технологию, предназначенную для прикладного использования.

Итак, процедура эконометрического или статистического анализа данных – это информационный технологический процесс, другими словами, та или иная информационная технология. Статистическая информация подвергается разнообразным операциям (последовательно, параллельно или по более сложным схемам). В настоящее время об автоматизации всего процесса статистического анализа данных говорить было бы несерьезно, поскольку имеется слишком много нерешенных проблем, вызывающих дискуссии среди статистиков. "Экспертные системы" в области статистического анализа данных пока не стали рабочим инструментом статистиков. Ясно, что и не могли стать. Можно сказать и жестче - это пока научная фантастика или даже вредная утопия.

В литературе статистические технологии рассматриваются явно недостаточно. В частности, обычно все внимание сосредотачивается на том или ином элементе технологической цепочки, а переход от одного элемента к другому остается в тени. Между тем проблема "стыковки" статистических алгоритмов, как известно, требует специального рассмотрения, поскольку в результате использования предыдущего алгоритма зачастую нарушаются условия применимости последующего. В частности, результаты наблюдений могут перестать быть независимыми, может измениться их распределение и т.п. (см. обсуждение этой проблемы в статье [45]).

Например, при проверке статистических гипотез большое значение имеют такие хорошо известные характеристики статистических критериев, как уровень значимости и мощность. Методы их расчета и использования при проверке одной гипотезы обычно хорошо известны. Если же сначала проверяется одна гипотеза, а потом с учетом результатов ее проверки - вторая, то итоговая процедура, которую также можно рассматривать как проверку некоторой (более сложной) статистической гипотезы, имеет характеристики (уровень значимости и мощность), которые, как правило, нельзя просто выразить через характеристики двух составляющих гипотез, а потому они обычно неизвестны. В результате итоговую процедуру нельзя рассматривать как научно обоснованную, она относится к эвристическим алгоритмам. Конечно, после соответствующего изучения, например, методом Монте-Карло, она может войти в число научно обоснованных процедур прикладной статистики.

Почему живучи "низкие статистические технологии"? "Высоким статистическим технологиям" противостоят, естественно, "низкие статистические технологии". Это те технологии, которые не соответствуют современному уровню науки и техники. Обычно они одновременно и устарели, и не адекватны сути решаемых эконометрических и статистических задач.