Смекни!
smekni.com

Системы эконометрических уравнений, их применение в эконометрике (стр. 3 из 4)

Во-вторых, в соотношении (1) появляются переменные новых типов - с лагами, т.е. аргументы в переменных относятся не к текущему моменту времени, а к некоторым прошлым моментам.

В-третьих, составление эконометрической модели типа (1) - это отнюдь не рутинная операция. Например, запаздывание именно на 4 месяца в связанном с эмиссией денег слагаемом b S (t - 4) - это результат достаточно изощренной предварительной статистической обработки. Далее, требует изучения вопрос зависимости или независимости величин S (t - 4) и I(t). От решения этого вопроса зависит, как выше уже отмечалось, конкретная реализация процедуры метода наименьших квадратов.

С другой стороны, в модели (1) всего 3 неизвестных параметра, и постановку метода наименьших квадратов выписать нетрудно:


2.3 Проблема идентифицируемости

Идентификация – это единственность соответствия между приведенной и структурной формами модели.

При переходе от приведенной формы модели к структурной исследователь сталкивается с проблемой идентификации. Индетификация – это единственность соответствия между приведенной и структурной формами модели.

С позиции идентификацируемости структурные модели можно подразделить на три вида[10]:

· идентифицируемые;

· неидентифицируемые;

· сверхидентифицируемые.

Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной модели, т.е. если число параметров структурной модели равно числу параметров приведенной формы модели.

Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.

Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов.

Структурная модель всегда представляет собой систему совместных уравнений, каждое из которых требуется проверить на идентификацию. Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо.

Чтобы уравнение было идентифицируемо, необходимо, чтобы число экзогенных переменных (D), отсутствующих в данном уравнении, но присутствующих в системе, было равно числу эндогенных переменных в данном уравнении (H) без одного. D+1=H – уравнение идентифицируемо;D+1<H – уравнение неидентифицируемо;D+1>H – уравнение сверхидентифицируемо. Уравнение идентифицируемо, если по отсутствующим в нем экзогенным и эндогенным переменным можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного.

2.4 Система линейных одновременных эконометрических уравнений

В литературе подобные системы часто называют системами одновременных уравнений, имея в виду, что здесь зависимая переменная одного уравнения может появляться одновременно в виде переменной (но уже в качестве независимой) в одном или нескольких других уравнениях. В таком случае теряет смысл традиционное различение зависимых и независимых переменных. Вместо этого устанавливается различие между двумя видами переменных.

Это, во-первых, совместно зависимые переменные (эндогенные), влияние которых друг на друга должно быть исследовано (матрица A в слагаемом Ay(t) приведенной выше системы уравнений).

Во-вторых, предопределенные переменные, которые, как предполагается, оказывают влияние на первые, однако не испытывают их воздействия; это переменные с запаздыванием, т. е. лаговые (второе слагаемое) и определенные вне данной системы уравнений экзогенные переменные.

Экзогенными, напр., всегда оказываются показатели климатических условий, если они включаются в модель. В то же время многие экономические переменные в зависимости от задач и структуры модели могут относиться и к эндогенным, и к экзогенным.

Понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т. Хавельмо, лауреатом Нобелевской премии по экономике.

В зависимости от характера ограничений и статистической структуры переменных эконометрические модели классифицируются на линейные модели с одной, двумя и большим числом переменных, а также на пробит-модели, логит-модели, тобит-модели и др.

Чисто формально можно все переменные выразить через переменные, зависящие только от текущего момента времени. Например, в случае уравнения (1) достаточно положить

H(t) = I(t- 1), G(t) = S (t - 4).

Тогда уравнение примет вид[11]:

I(t) = сH(t) + a + bG(t) + e. (2)

Отметим здесь же возможность использования регрессионных моделей с переменной структурой путем введения фиктивных переменных. Эти переменные при одних значениях времени (скажем, начальных) принимают заметные значения, а при других - сходят на нет (становятся фактически равными 0). В результате формально (математически) одна и та же модель описывает совсем разные зависимости.

2.5 Методы наименьших квадратов

Как уже отмечалось, разработана масса методов эвристического анализа систем эконометрических уравнений. Они предназначены для решения тех или иных проблем, возникающих при попытках найти численные решения систем уравнений.

Одна из проблем связана с наличием априорных ограничений на оцениваемые параметры. Например, доход домохозяйства может быть потрачен либо на потребление, либо на сбережение. Значит, сумма долей этих двух видов трат априори равна 1. А в системе эконометрических уравнений эти доли могут участвовать независимо. Возникает мысль оценить их методом наименьших квадратов, не обращая внимания на априорное ограничение, а потом подкорректировать. Такой подход называют косвенным методом наименьших квадратов.

Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. В то же время трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и погрешности каждого уравнения, а затем построить оценку для ковариационной матрицы погрешностей, После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов.

Алгоритм косвенного метода наименьших квадратов[12]:• Структурная модель преобразовывается в приведенную форму модели.• Для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты.• Коэффициенты приведенной формы модели трансформируются в параметры структурной формы модели.Алгоритм двухшагового метода наименьших квадратов:• Определяется приведенная форма модели, и находятся на ее основе оценки теоретических значений эндогенных переменных.• Определяются структурные коэффициенты модели по данным теоретических (расчетных) значений эндогенных переменных.

Эконометрика - одно из ответвлений комплекса научных дисциплин, объединяемого понятием «экономико-математические методы». Ее главным инструментом является эконометрическая модель (англ. econometric model) - экономико-математическая модель, параметры которой оцениваются с помощью методов математической статистики. Она выступает в качестве средства анализа и прогнозирования конкретных экономических процессов, как на макро-, так и на микроэкономическом уровне на основе реальной статистической информации.

Наиболее распространены эконометрии, модели, представляющие собой системы регрессионных уравнений, в которых отражается зависимость эндогенных величин (искомых) от внешних воздействий (текущих экзогенных величин) в условиях, описываемых оцениваемыми параметрами модели, а также лаговыми переменными.

Экзогенными, например, считаются показатели климатические условий, если они включаются в модель; в то же время мн. экономические переменные в зависимости от задач и структуры модели могут относиться и к эндогенным, и к экзогенным.)

Заключение

В данной курсовой работе я рассмотрела методы восстановления временных зависимостей на основе наименьших квадратов и наименьших модулей. Среди них важное место занимают модели линейной (по параметрам) регрессии. Большое значение приобретает задача оценивание необходимой степени полинома. Полезны модели авторегрессии, в том числе простейшая эмпирическая модель экспоненциального сглаживания. Оценка длины периода может быть сделана на основе методов статистики объектов нечисловой природы путем минимизации в функциональном пространстве. Также рассмотрела типичные системы эконометрических моделей и примеры их практического примененияЭконометрика – это раздел экономики, занимающийся разработкой и применением статистических методов для измерений взаимосвязей между экономическими переменными (С.Фишер). С.А.Айвазян полагает, что эконометрика объединяет совокупность методов и моделей, позволяющих на базе экономической теории, экономической статистики и математики констатического инструментария придавать количественные выражения качественными зависимостями.Экономическая составляющая эконометрии, безусловно, является первичной. Именно экономика определяет постановку задачи и исходные предпосылки, а результат, формируемый на математическом языке, представляет интерес лишь в том случае, если удается его экономическая интерпретация. В то же время многие эконометрические результаты носят характер математических утверждений (теорем).Широкому внедрению эконометрических методов способствовало появление во второй половине ХХ века ЭВМ и в частности персональных компьютеров.Компьютерные эконометрические пакеты сделали эти методы более доступными и наглядными, так как всю наиболее трудоемкую работу, по расчетам статистики, параметров, построению таблиц и графиков в основном стал выполнять компьютер, а эконометристу осталась главным образом: постановка задачи, выбор соответствующих моделей и методов её решения, интерпретации результатов.Под системой эконометрических уравнений обычно понимается система одновременных, совместных уравнений. Ее применение имеет ряд сложностей, которые связаны с ошибками спецификации модели. В виду большого числа факторов, влияющих на экономические переменные, исследователь, как правило, не уверен в точности предполагаемой модели для описания экономических процессов.

Менеджеру и экономисту не следует становиться специалистом по составлению и решению систем эконометрических уравнений, даже с помощью тех или иных программных систем, но он должен быть осведомлен о возможностях этого направления эконометрики, чтобы в случае производственной необходимости квалифицированно сформулировать задание для специалистов-эконометриков.