Считается, что регулярная составляющая f (a, х) представляет собой гладкую функцию от аргумента (в большинстве случаев - времени), описываемую конечномерным вектором параметров а, которые сохраняют свои значения на периоде упреждения прогноза. Эта составляющая называется также трендом, уровнем, детерминированной основой процесса, тенденцией. Под всеми этими терминами лежит интуитивное представление о какой-то очищенной от помех сущности анализируемого процесса. Интуитивное, потому что для большинства экономических, технических, природных процессов нельзя однозначно отделить тренд от случайной составляющей. Все зависит от того, какую цель преследует это разделение и с какой точностью его осуществлять.
Случайная составляющая n (х) обычно считается некоррелированным случайным процессом с нулевым математическим ожиданием. Ее оценки необходимы для дальнейшего определения точностных характеристик прогноза. Экстраполяционные методы прогнозирования основной упор делают на выделение наилучшего в некотором смысле описания тренда и на определение прогнозных значений путем его экстраполяции. Методы экстраполяции во многом пересекаются с методами прогнозирования по регрессионным моделям. Иногда их различия сводятся лишь к различиям в терминологии, обозначениях или написании формул. Тем не менее, сама по себе прогнозная экстраполяция имеет ряд специфических черт и приемов, позволяющих причислять ее к некоторому самостоятельному виду методов прогнозирования.
Специфическими чертами прогнозной экстраполяции можно назвать методы предварительной обработки числового ряда с целью преобразования его к виду, удобному для прогнозирования, а также анализ логики и физики прогнозируемого процесса, оказывающий существенное влияние как па выбор вида экстраполирующей функции, так и на определение границ изменения ее параметров.
Одним из основных свойств экономической информационной системы является делимость на подсистемы, которая имеет ряд достоинств с точки зрения разработки и эксплуатации экономической информационной системой, к которым относятся [3, c.148]:
упрощение разработки и модернизации экономической информационной системы в результате специализации групп проектировщиков по подсистемам;
упрощение внедрения и поставки готовых подсистем в соответствии с очередностью выполнения работ;
упрощение эксплуатации экономической информационной системы вследствие специализации работников предметной области.
Обычно выделяют функциональные и обеспечивающие подсистемы. Функциональные подсистемы экономической информационной системы информационно обслуживают определенные виды деятельности экономической системы (предприятия), характерные для структурных подразделений экономической системы и (или) функций управления. Интеграция функциональных подсистем в единую систему достигается за счет создания и функционирования обеспечивающих подсистем, таких, как информационная, программная, математическая, техническая, технологическая, организационная и правовая подсистемы.
Функциональная подсистема экономической информационной системы представляет собой комплекс экономических задач с высокой степенью информационных обменов (связей) между задачами. При этом под задачей будем понимать некоторый процесс обработки информации с четко определенным множеством входной и выходной информации (например, начисление сдельной заработной платы, учет прихода материалов, оформление заказа на закупку и т.д.).
Состав функциональных подсистем во многом определяется особенностями экономической системы, ее отраслевой принадлежностью, формой собственности, размером, характером деятельности предприятия.
Функциональные подсистемы экономической информационной системы могут строиться по различным принципам:
предметному;
функциональному;
проблемному,
смешанному (предметно-функциональному).
Так, с учетом предметной направленности использования ЭИС в хозяйственных процессах промышленного предприятия выделяют подсистемы, соответствующие управлению отдельными ресурсами:
управление сбытом готовой продукции;
управление производством;
управление материально-техническим снабжением;
управление финансами;
управление персоналом.
При анализе спроса или предложения часто возникает необходимость для их прогнозирования. Чтобы правильно сделать прогноз необходимо сначала сгладить или построить некоторую модель, по которой можно будет делать прогноз [3, c.93].
При построении линейной модели спроса или предложения чаще всего учитываются не только значения показателей, но важное место отводится факторам, влияющим на спрос и предложение. Например, на спрос очень часто влияет уровень доходов населения, сезонность, ставки процентов в банке и многие другие факторы. Так и на предложение могут влиять повышенные цены на ресурсы, научно-технический прогресс, налоги и многое другое.
Рассмотрим первой модель, наиболее часто применяющуюся не только для построения моделей спроса и предложения, но и многих других экономических показателей.
где t - временной фактор, в течение которого изменяется спрос и предложение; а0 и а1 - расчетные параметры.
Модель, приведенная выше, называется трендовой моделью экономической динамики, иначе кривая роста для экономических процессов. Ее основная цель - на основе ее сделать прогноз о развитии изучаемого процесса на предстоящий промежуток времени.
В настоящее время насчитывается большое количество типов кривых роста для экономических процессов. Наиболее часто в экономике используются полиномиальные, экспоненциальные и S-образные кривые роста. Показанная выше модель относится к разряду полиномиальных кривых роста. Это простейшие кривые роста, которые могут принимать и другой вид:
(полином первой степени) (полином второй степени) (полином третьей степени)Параметр а1 называют линейным приростом, параметр а2 - ускорением роста, параметр а3 - изменением ускорения роста. Для расчета параметров применяют метод наименьших квадратов или записывают уравнения в матричной форме. Поскольку к матричной форме нахождения параметров мы вернемся позднее, то запишем нахождение параметров с помощью метода наименьших квадратов. Для полинома первой степени:
Для полинома второй степени:
Для полинома третьей степени:
Таким образом, могут быть получены все параметры полиномиальных моделей.
Чтобы правильно подобрать наилучшую кривую роста для моделирования и прогнозирования экономического явления, необходимо знать особенности каждого вида кривых. Но чаще всего при построение линейных моделей спроса и предложения приходится использовать для прогнозирования ту модель, которая при ее анализе дает лучшие результаты. Анализ модели проводится по случайной величине et. Начальные параметры записываются в виде
, где (или другая полиномиальная кривая роста), а et - случайная величина. Есть две основные возможные причины случайности:1. Прогнозирование на основе временного ряда экономических показателей относится к одномерным методам прогнозирования, базирующимся на экстраполяции, т.е. на продлении на будущем тенденции, наблюдавшейся в прошлом. При таком подходе предполагается, что прогнозируемый показатель формируется под воздействием большого количества факторов, выделить которые невозможно, либо по которым отсутствует информация. Таким образом, наша модель является упрощением действительности.
2. Трудности в измерении данных (присутствуют ошибки измерений), а также ошибка образуется при округлении расчетных значений.
Ход измерения данного показателя во временном ряде связывают не с фактором, а с течением времени, что проявляется в образовании одномерных временных рядов.
Кроме полиномиальных кривых роста одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической нелинейной функции, характеризующей зависимость ряда от времени. Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения эконометрических моделей спроса и предложения чаще всего используют экспоненциальный тренд:
.Поскольку мы рассмотрели уже достаточно много моделей, по которым можно строить прогнозы спроса и предложения в зависимости от времени, то необходимо определить какая из них будет лучше анализировать исходный параметр, т.е. определить тип тенденции.
Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих целях можно использовать и коэффициент автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанные по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни ytи yt-1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанные по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.