Реферат
В курсовом проекте представлена концепция моделирования различных процессов в универсальной системе моделирования на примере конкретно поставленной задачи.
В пояснительной записке содеожится обоснование выбора программного средства, цели выполнения моделирования, постановка с заданными параметрами, а также приведены непосредственно модель и результат ее работы.
В век компьютерных технологий и всё более глубокого внедрения автоматизированных систем управления на предприятиях особенно востребованным является умение решать задачи, таких как та, которая была дана на курсовое проектирование:
Умение решать задачи по автоматизации технологических процессов подразумевает умение вести научно – исследовательскую и проектно – конструкторскую работу в области исследования и разработки сложных систем; способность ставить и проводить имитационные эксперименты с моделями процессов функционирования систем на современных ЭВМ для оценки вероятностно – временных характеристик систем; принятие экономически и технически обоснованных инженерных решений; анализ научно – технической литературы в области системного моделирования, а также использование стандартов, справочников, технической документации по математическому и программному обеспечению ЭВМ и т.д.
Система GPSS (GeneralPurposeSystemSimulator) предназначена для написания имитационных моделей систем с дискретными событиями. Наиболее удобно в системе GPSS описываются модели систем массового обслуживания, для которых характерны относительно простые правила функционирования составляющих их элементов.
В системе GPSS моделируемая система представляется с помощью набора абстрактных элементов, называемых объектами. Каждый объект принадлежит к одному из типов объектов.
Объект каждого типа характеризуется определенным способом поведения и набором атрибутов, определяемых типом объекта. Например, если рассмотреть работу порта, выполняющего погрузку и разгрузку прибывающих судов, и работу кассира в кинотеатре, выдающего билеты посетителям, то можно заметить большое сходство в их функционировании. В обоих случаях имеются объекты, постоянно присутствующие в системе (порт и кассир), которые обрабатывают поступающие в систему объекты (корабли и посетители кинотеатра). В теории массового обслуживания эти объекты называются приборами и заявками. Когда обработка поступившего объекта заканчивается, он покидает систему. Если в момент поступления заявки прибор обслуживания занят, то заявка становится в очередь, где и ждет до тех пор, пока прибор не освободится. Очередь также можно представлять себе как объект, функционирование которого состоит в хранении других объектов. Каждый объект может характеризоваться рядом атрибутов, отражающих его свойства. Например, прибор обслуживания имеет некоторую производительность, выражаемую числом заявок, обрабатываемых им в единицу времени. Сама заявка может иметь атрибуты, учитывающие время ее пребывания в системе, время ожидания в очереди и т.д. Характерным атрибутом очереди является ее текущая длина, наблюдая за которой в ходе работы системы (или ее имитационной модели), можно определить ее среднюю длину за время работы (или моделирования). В языке GPSS определены классы объектов, с помощью которых можно задавать приборы обслуживания, потоки заявок, очереди и т.д., а также задавать для них конкретные значения атрибутов.
Раздел 1. Постановка задачи
Задача: на регулировочный участок цеха через случайные интервалы времени поступают по два агрегата в среднем через каждые 45 мин. Первичная регулировка осуществляется для двух агрегатов одновременно и занимает около 40 мин. Если в момент прихода агрегатов предыдущая партия не была обработана, поступившие агрегаты на регулировку не принимаются. Агрегаты после первичной регулировки, получившие отказ, поступают в промежуточный накопитель. Из накопителя агрегаты, прошедшие первичную регулировку, поступают попарно на вторичную регулировку, которая выполняется в среднем за 50 мин, а не прошедшие первичную регулировку поступают на полную, которая занимает 120 мин для одного агрегата. Все величины, заданные средними значениями, распределены экспоненциально.
Смоделировать работу участка в течение 240 ч. Определить вероятность отказа в первичной регулировке и загрузку накопителя агрегатами, нуждающимися в полной регулировке. Определить параметры и ввести в систему накопитель, обеспечивающий безотказное обслуживание поступающих агрегатов.
Необходимо исследовать работу регулировочного участка, состоящего из первичной, вторичной и полной регулировок, а также агрегатов поступающих на регулировку. В качестве цели моделирования выберем изучение функционирования системы, а именно оценивание ее характеристик с точки зрения эффективности работы системы, т.е. будет ли обеспечено безотказное обслуживание поступающих агрегатов.
С учетом имеющихся ресурсов в качестве метода решения задачи выберем метод имитационного моделирования, позволяющий не только анализировать характеристики модели, но и проводить структурный, алгоритмический и параметрический синтез модели на ЭВМ при заданных критериях оценки эффективности и ограничениях.
Постановка задачи исследования функционирования регулировочного участка, состоящего из первичной, вторичной и полной регулировок, а также агрегатов поступающих на регулировку, представлена в задании к курсовому проектированию, из которого следует, что необходимо определить:
· вероятность отказа в первичной регулировке;
· загрузку накопителя агрегатами, нуждающимися в полной регулировке.
В качестве критерия оценки эффективности процесса функционирования системы целесообразно выбрать вероятность отказа в первичной обработке вследствие переполнения очереди, которая должна быть минимальной, при этом загрузка УПД и каждой ЭВМ должна быть максимальной.
Экзогенные (независимые) переменные модели:
· время первичной обработки;
· время вторичной обработки;
· время полной обработки;
· количество обрабатываемых агрегатов на каждой регулировке;
Эндогенные (зависимые) переменные модели:
· вероятность отказа в первичной регулировке;
· загрузка накопителя агрегатами, нуждающимися в полной регулировке;
При построении математической имитационной модели процессов функционирования системы будем использовать непрерывно-стохастический подход на примере типовой Q-схемы, потому что исследуемая система может быть представлена как система массового обслуживания с непрерывным временем обработки параметров.
Формализовав процесс функционирования исследуемой системы в абстракциях Q-схемы, на втором этапе алгоритмизации модели и ее машинной реализации выберем язык имитационного моделирования, потому что высокий уровень проблемной ориентации языка значительно упростит программирование, а специально предусмотренные в нем возможности сбора, обработки и вывода результатов моделирования позволят быстро и подробно проанализировать возможные исходы имитационного эксперимента с моделью. Для получения полной информации о характеристиках процесса функционирования системы необходимо будет провести полный факторный эксперимент, который позволит определить, насколько эффективно функционирует система, и выдать рекомендации по ее усовершенствованию.
Для заполнения пробелов в понимании задачи исследования, а также проверки возможных результатов моделирования при проведении машинного эксперимента выдвигаем следующие гипотезы:
· количество первичных и вторичных обработок будет одинаково, так как они выполняются последовательно;
· количество поступающих агрегатов на полную регулировку будет меньше, чем на первичной регулировке, так как время затрачиваемое на обработку агрегатов на полной регулировке равно 120 минут, тогда как на первичной регулировке затрачивается 40 минут, а также на первичную регулировку агрегаты поступают попарно, а на полную по одному.
Процесс начинает свою работу с выполнения проверки (блок1) на наличие свободных мест на первой регулировке. Если места есть, то агрегаты направляются на первичную регулировку (блок2), после чего происходит постановка агрегатов в очередь в накопитель 2 (блок 3). Если же мест на первичной регулировке не оказалось, то агрегаты становятся в очередь в накопитель 1 (блок 4). Из накопителя 1 агрегаты поступают на полную регулировку (блок 5), после чего покидают систему. Из накопителя 2 агрегаты поступают на вторичную регулировку (блок 6), после которой также покидают систему.