Смекни!
smekni.com

Методика эксперимента и расчет технологического режима получения антифрикционного покрытия (стр. 1 из 2)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ

(ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ)

ТЕМА: «МЕТОДИКА ЭКСПЕРИМЕНТА И РАСЧЕТ ТЕХНОЛОГИЧЕСКОГО РЕЖИМА ПОЛУЧЕНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ»


Постановка задачи

Предложить оптимальный режим получения антифрикционного покрытия на твердой подложке с максимально возможной толщиной (Y1 ) при наибольшей твердости (Y2 ).

Из девяти факторов методом априорного ранжирования надо выбрать три наиболее значимых.

На процесс оказывают влияние следующие факторы:

Х1– давление паров селена, мм.рт. ст.;

Х2– температура нагрева пластины, С;

X3– время термообработки, мин.;

X4– чистота молибденового покрытия, %;

X5– наличие защитной атмосферы, %;

Х6 – толщина молибденового покрытия, % ;

Х7– габариты пластины, см;

Х8– чистота селена, %;

Х9– предварительный отжиг пластины.

Анализируем опубликованную информацию о влиянии факторов на данный объект исследования, или получаем необходимые сведения путем независимого опроса пяти специалистов, предлагая им расположить факторы по степени их влияния на процесс получения покрытия (см. табл. 2.1).

Таблица 1 - Результаты ранжирования факторов

Специалисты Ранги
Х1 Х2 Х3 Х4 Х5 Х6 Х7 Х8 Х9
1 1 2 4 4 6 5 7 5 8
2 2 3 3 7 9 5 8 6 7
3 1 1 4 5 8 6 9 7 9
4 2 2 3 6 7 5 7 5 6
5 1 2 2 8 7 6 8 6 7

Обрабатываем результаты, приведенные в таблице 1 Определяем сумму рангов в каждом столбце. Например, в столбце Х1

, где с - число специалистов.

Определяем среднюю сумму рангов:

Находим отклонение суммы рангов от среднего значения, например для Х1:

Результаты такой обработки данных приведены ниже:

Сумма рангов 7 10 16 30 37 27 39 29 37
Отклонение суммы рангов от средней (∆i) -19 -3 -9 -23 -30 -20 -32 -22 -30
∆i2 361 9 81 529 900 400 1024 484 900

Определяем согласованность мнений специалистов по χ2 -критерию.

Мнения специалистов согласуются, если χ2расч≥ χ2табл;

здесь

; tU- число групп, образованных факторами одинакового ранга;

По табл. П. 1 [1] при определенном уровне значимости α и числе степеней свободы f=k-1 выбираем табличное значение χ2табл = 15,51 для α = 0,05 и f=(9-1) = 8. Поскольку χ2расч≥ χ2табл, мнения специалистов согласуются.

Графически сумму рангов представляем в виде диаграммы

Рисунок 1 - Диаграмма суммы рангов

По диаграмме выбираем наиболее значимые факторы. Как видно из рисунка 1, эксперты отдали предпочтение следующим трем факторам:

Х1– давление паров селена, мм.рт. ст.;

Х2– температура нагрева пластины, С;

X3– время термообработки, мин.;

Используя результаты ПФЭ и обобщенный параметр оптимизации, составляем уравнение регрессии.

Выбираем параметр оптимизации,:

Y1 – толщина антифрикционного слоя, мкм;

Y2 – твердость, кг/мм2

Выбираем основной уровень и интервал варьирования факторов:

Х1= (140 ± 100, мм.рт.ст.),

Х2 = (600 ± 100, С ),

X3 = (40 ± 20, мин.).

Таблица 2 – Матрица планирования ПФЭ

№ опыта Х0 Х1 Х2 Х3 Y1 Y2 d1 d2 d1d2
1 + 240 500 20 18 94 0,92 0,89 0,819 0,904
2 + 40 700 20 8 56 0,37 0,48 0,177 0,421
3 + 40 500 60 5 54 0,12 0,44 0,052 0,223
4 + 240 700 20 12 29 0,69 0,06 0,041 0,202
5 + 240 500 60 5 80 0,12 0,80 0,096 0,309
6 + 40 700 60 5 50 0,12 0,37 0,044 0,209
7 + 240 700 60 15 80 0,84 0,80 0,672 0,819
8 + 40 500 20 4 36 0,07 0,13 0,009 0,094
9 + 140 600 40 8,5 83 0,41 0,83 0,340 0,583
10 + 140 600 40 8,3 81 0,40 0,81 0,324 0,569
11 + 140 600 40 8,4 82 0,40 0,82 0,328 0,572
12 + 140 600 40 8,4 84 0,40 0,84 0,336 0,579

Рисунок 2 Функция желательности


Y1–степень извлечения циркония;

Y2–содержание гафния в цирконии

По табл. П2 [1] строим график функции Харрингтона. По осям откладываем натуральные значения обобщаемых параметров. Числовые значения границ желательности, согласно техническим условиям, следующие:

d Y1 Y2
0,95 25 130
0,37 8 50

Находим по графику формальные значения (d1и d2) обобщаемых параметров оптимизации и вычисляем обобщенный параметр оптимизации по формуле
Полученные данные, т.е. значения d1, d2и D, заносим в таблицу 2.

Вычисляем коэффициенты уравнения

D= bo + b1X1 + b2X2 + b3X3+ bl2X1X2+ bl3X1X3+ b23X2X3 + bl23X1X2 X3для обобщенного параметра оптимизации (таблица 3).

Таблица 3 - Расчет коэффициентов уравнения

номер опыта Х0 Х1 Х2 Х3 X1X2 X1X3 X2X3 X1X2 X3 D
1 + + - - - - + + 0,904
2 + - + - - + - + 0,421
3 + - - + + - - + 0,223
4 + + + - + - - - 0,202
5 + + - + - + - - 0,309
6 + - + + - - + - 0,209
7 + + + + + + + + 0,819
8 + - - - + + + - 0,094
3,181 1,287 0,121 -0,061 -0,505 0,105 0,871 1,553
bi 0,397 0,160 0,015 -0,007 -0,063 0,013 0,108 0,194

Коэффициенты biуравнения регрессии рассчитываем по формуле:

Уравнение регрессии для обобщенного параметра оптимизации имеет вид:

D= 0,397 + 0,160X1 + 0,015X2 - 0,007X3- 0,063 X1X2+ 0,013X1X3+ 0,108X2X3 + 0,194X1X2 X3

Для проверки значимости коэффициентов регрессии выполняем четыре параллельных опыта на основном уровне (таблица 2 опыты 9...12).

Статистическая обработка результатов.

Рассчитываем дисперсию параметра оптимизации и доверительный интервал для коэффициентов уравнения. По параллельным опытам (9... 12 в задании) подсчитываем дисперсию параметра оптимизации и доверительный интервал для коэффициентов уравнения.

Дисперсию параметра оптимизации вычисляем по формуле:

где т = 4 – число опытов на основном уровне;

Dn– значение D, получаемое в каждом из четырех параллельных опытов;

D – среднее арифметическое значение D.

Значение S2D=0,42.10-4.

Доверительный интервал для коэффициентов регрессии определяем по формуле: