Смекни!
smekni.com

Решение задач с нормальными законами в системе "Статистика" (стр. 4 из 5)


7. Для каждого i-го объекта k-го подмножества М определяется значение дискриминантной функции:

F1(1)=0,104743×224,228+2,046703×17,115+(-0,13635)×22,981=55,38211;

F2(1)=0,104743×151,827+2,046703×14,904+(-0,13635)×21,481=43,47791;

F3(1)=0,104743×147,313+2,046703×13,627+(-0,13635)×28,669=39,41138;

F4(2)=0,104743×152,253+2,046703×10,545+(-0,13635)×10,199=36,13924;

F1(2)=0,104743×46,757+2,046703×4,428+(-0,13635)×11,124=12,44351;

………………………………………………………………………………..

F5(2)=0,104743×63,979+2,046703×4,211+(-0,13635)×12,860=13,56655.

8. По совокупности найденных значений F(k) рассчитываются средние значения

для каждого подмножества Mk:

9. Определяется общее среднее (константа дискриминации) для дискриминантных функций:

10. Выполняется распределение объектов подмножества М0 по обучающим подмножествам М1 и М2, для чего по каждому объекту (i = 1, 2, 3) рассчитываются дискриминантные функции:

F1(0)=0,104743×55,451+2,046703×9,592+(-0,13635)×12,840=23,68661

F2(0)=0,104743×78,575+2,046703×11,727+(-0,13635)×15,535=30,11366

F3(0)=0,104743×98,353+2,046703×17,572+(-0,13635)×20,458=23,68661

Затем рассчитанные значения дискриминантных функций F(0) сравниваются с общей средней F=28,3556.

Поскольку

, то i-й объект подмножества М0 относят к подмножеству М1 при
> 0 и к подмножеству М2 при
<0. С учетом этого в данном примере предприятия 2 и 3 подмножества М0 относятся к М1, а предприятие 1 относится к М2.

Если бы выполнялось условие

, то объекты М0 относились к подмножеству М1, при
и к подмножеству М2 в противном случае.

11. Оценку качества распределения новых объектов выполним путем сравнения с константой дискриминации F значений дискриминантных функций Fi(k)=обучающих подмножеств М1 и М2. Поскольку для всех найденных значений выполняются неравенства

, и
, то можно предположить о правильном распределении объектов и уже существующих двух классах и верно выполненной классификации объектов подмножества М0.

3.2 Пример решения задачи дискриминантным анализом в системе STATISTICA

Исходя из данных по 10 странам (рис. 3.1), которые были выбраны и отнесены к соответствующим группам экспертным методом (по уровню медицинского обслуживания), необходимо по ряду показателей классифицировать еще две страны: Молдавия и Украина.

Исходными показателями послужили:

Х1 – Количество человек, приходящихся на одного врача;

Х2 – Смертность на 1000 человек;

Х3 – ВВП, рассчитанный по паритету покупательной способности на душу населения (млн. $);

Х4 – Расходы на здравоохранение на душу населения ($).

Уровень медицинского обслуживания стран подразделяется на:

- высокий;

- средний (удовлетворительный);

- низкий.

Кол-во чел. на 1 врача Расх. на здрав. ВВП Смертность Класс
Азербайджан 256 99 3000 9,6 низкий
Армения 198 152 3000 9,7 низкий
Белоруссия 222 157 7500 14 высокий
Грузия 182 152 4600 14,6 удовлетворительный
Казахстан 265 154 5000 10,6 удовлетворительный
Киргизия 301 118 2700 9,1 низкий
Россия 235 159 7700 13,9 высокий
Таджикистан 439 100 1140 8,6 низкий
Туркмения 320 125 4300 9 удовлетворительный
Узбекистан 299 116 2400 8 низкий

Рис. 3.1

Используя вкладку анализ, далее многомерный разведочный анализ, необходимо выбрать дискриминантный анализ. На экране появится панель модуля дискриминантный анализ, в котором вкладка переменные позволяет выбрать группирующую и независимые переменные. В данном случае группирующая переменная 5 (класс), а независимыми переменными выступят 1-4 (кол-во человек на 1 врача; расходы на здравоохранение; ВВП на душу населения; смертность).

В ходе вычислений системой получены результаты:

Вывод результатов показывает:

- число переменных в модели – 4;

- значение лямбды Уилкса – 0,0086739;

- приближенное значение F – статистики, связанной с лямбдой Уилкса – 9,737242;

- уровень значимости F – критерия для значения 9,737242.

Значение статистики Уилкса лежит в интервале [0,1]. Значения статистики Уилкса, лежащие около 0, свидетельствуют о хорошей дискриминации, а значения, лежащие около 1, свидетельствуют о плохой дискриминации. По данным показателя значение лямбды Уилкса, равного 0,0086739 и по значению F – критерия равного 9,737242, можно сделать вывод, что данная классификация корректная.

В качестве проверки корректности обучающих выборок необходимо посмотреть результаты матрицы классификации (рис. 3.2).

Матрица классификации . Строки: наблюдаемые классы Столбцы: предсказанные классы
Процент низкий высокий удовлетв
низкий 100,0000 5 0 0
высокий 100,0000 0 2 0
удовлетв 100,0000 0 0 3
Всего 100,0000 5 2 3

Рис. 3.2

Из матрицы классификации можно сделать вывод, что объекты были правильно отнесены экспертным способом к выделенным группам. Если есть объекты, неправильно отнесенные к соответствующим группам, можно посмотреть классификацию наблюдений (рис.3.3).

Классификация наблюдений. Неправильные классификации отмечены *
Наблюд. 1 2 3
Азербайджан низкий низкий удовлетв высокий
Армения низкий низкий удовлетв высокий
Белоруссия высокий высокий низкий удовлетв
Грузия удовлетв удовлетв низкий высокий
Казахстан удовлетв удовлетв низкий высокий
Киргизия низкий низкий удовлетв высокий
Россия высокий высокий низкий удовлетв
Таджикистан низкий низкий удовлетв высокий
Туркмения удовлетв удовлетв низкий высокий
Узбекистан низкий низкий удовлетв высокий

Рис. 3.3

В таблице классификации наблюдений, некорректно отнесенные объекты помечаются звездочкой (*). Таким образом, задача получения корректных обучающих выборок состоит в том, чтобы исключить из обучающих выборок те объекты, которые по своим показателям не соответствуют большинству объектов, образующих однородную группу.

В результате проведенного анализа общий коэффициент корректности обучающих выборок должен быть равен 100% (рис. 3.2).

На основе полученных обучающих выборок можно проводить повторную классификацию тех объектов, которые не попали в обучающие выборки, и любых других объектов, подлежащих группировке.

Для этого необходимо в окне диалогового окна результаты анализа дискриминантных функций нажать кнопку функции классификации. Появится окно (рис. 3.4), из которого можно выписать классификационные функции для каждого класса.

Функции классификации
низкий высокий удовлетв
Кол-во чел на 1 врача 1,455 2,35 1,834
Расх на здрав 1,455 1,98 1,718
ВВП 0,116 0,20 0,153
Смертность 29,066 46,93 36,637
Конст-та -576,414 -1526,02 -921,497

Рис. 3.4

Таблица 3

Классификационные функции для каждого класса

Низкий класс = -576,414+1,455*кол-во чел на 1 врача+1,455*расх на здра+0,116*ВВП+29,066*смертность
Высокий класс =-1526,02+2,35*кол-во чел на 1 врача+1,98*расх на здрав+0,20*ВВП+46,93*смертность
Удовлетворительный класс =-921,497+1,834*кол-во чел на 1 врача+1,718*расх на здра+0,153*ВВП+36,637*смертность

С помощью этих функций можно будет в дальнейшем классифицировать новые случаи. Новые случаи будут относиться к тому классу, для которого классифицированное значение будет максимальное.

Необходимо определить принадлежность стран Молдавия и Украина, подставив значения соответствующих показателей в формулы (Таблица 4).