Смекни!
smekni.com

Математическое моделирование экономических ситуаций (стр. 1 из 2)

Тема 1

Задача 1

Имеется информация о количестве книг, полученных студентами по абонементу за прошедший учебный год.

2 4 4 7 6 5 2 2 3 4
4 3 6 5 4 7 6 6 5 3
2 4 2 3 5 7 4 3 3 2
4 5 6 6 10 4 3 3 2 3

Построить вариационный, ранжированный, дискретный ряд распределения, обозначив элементы ряда.

Решение:

Ранжированный вариационный ряд:

2 2 2 2 2 2 2 3 3 3
3 3 3 3 3 3 4 4 4 4
4 4 4 4 4 5 5 5 5 5
6 6 6 6 6 6 7 7 7 10

Дискретный вариационный ряд:

2 3 4 5 6 7 10
7 9 9 5 6 3 1
7/40 9/40 9/40 5/40 6/40 3/40 1/40

– варианты,
– частоты,
=
/(7+9+9+5+6+3+1)=
/40

Тема 2

Задача 1

В таблице приведены данные о продажах автомобилей в одном из автосалонов города за 1 квартал прошедшего года. Определите структуру продаж.

Марка автомобиля Число проданных автомобилей
Skoda 245
Hyundai 100
Daewoo 125
Nissan 274
Renault 231
Kia 170
Итого 1145

Решение:

Показатель структуры (ОПС):

ОПС = Число проданных автомобилей / 1145

Skoda 245/1145=0.214

Hyundai 100/1145=0.087

Daewoo 125/1145=0.109

Nissan 274/1145=0.239

Renault 231/1145=0.203

Kia 170/1145=0.148

Марка автомобиля Число проданных автомобилей Доля в продажах (%)
Skoda 245 21.4
Hyundai 100 8.7
Daewoo 125 10.9
Nissan 274 23.9
Renault 231 20.3
Kia 170 14.8
Итого 1145 100

Тема 3

Задача 1

Имеется информация о численности студентов ВУЗов города и удельном весе (%) обучающихся студентов на коммерческой основе:

ВУЗы города Общее число студентов (тыс. чел.) Из них удельный вес (%), обучающихся на коммерческой основе.
УГТУ—УПИ 15 15
УрГЭУ 3 10
УрГЮА 7 20

Определить: 1) средний удельный вес студентов ВУЗов, обучающихся на коммерческой основе; 2) число этих студентов.

Решение:

1) Средний удельный вес студентов ВУЗов, обучающихся на коммерческой основе (%): (15+10+20)/3=15 %

Число студентов, обучающихся в этих трёх ВУЗах на коммерческой основе в сумме: 15*0.15+3*0.1+7*0.2=2.25+0.3+1.4=3.95 тыс. чел.

2) Число студентов ВУЗов, обучающихся на коммерческой основе в среднем: 3.95/3=1.317 тыс. чел.

Тема 4

Задача 1

При изучении влияния рекламы на размер среднемесячного вклада в банках района обследовано 2 банка. Получены следующие результаты:


Размер месячного вклада, рубли Число вкладчиков
Банк с рекламой Банк без рекламы
До 500 3
500-520 4
520-540 17
540-560 11 15
560-580 13 6
580-600 18 5
600-620 6
620-640 2
Итого 50 50

Определить:

1) для каждого банка: а) средний размер вклада за месяц; б) дисперсию вклада;

2) средний размер вклада за месяц для двух банков вместе.

3) Дисперсию вклада для 2-х банков, зависящую от рекламы;

4) Дисперсию вклада для 2-х банков, зависящую от всех факторов, кроме рекламы;

5) Общую дисперсию используя правило сложения;

6) Коэффициент детерминации;

7) Корреляционное отношение.

Решение:

(0+500)/2=250, (500+520)/2=510, (520+540)/2=530, (540+560)/2=550,

(560+580)/2=570, (580+600)/2=590, (600+620)/2=610, (620+640)/2=630.

Размер месячного вклада, рубли Средний размер месячного вклада, рубли Число вкладчиков
Банк с рекламой Банк без рекламы
До 500 250 3
500-520 510 4
520-540 530 17
540-560 550 11 15
560-580 570 13 6
580-600 590 18 5
600-620 610 6
620-640 630 2
Итого 50 50

1) Для банка с рекламой средний размер вклада за месяц составил:

(550*11+570*13+590*18+610*6+630*2)/50=580 руб.

Для банка без рекламы средний размер вклада за месяц составил:

(250*3+510*4+530*17+550*15+570*6+590*5)/50=528,4 руб.

Для банка с рекламой дисперсия вклада будет:

=((550-580)²*11+(570-580)²*13+(590-580)²*18+(610-580)²*6+

+(630-580)²*2)/50=(900*11+100*13+100*18+900*6+2500*2)/50=23400

/50=468

Для банка без рекламы дисперсия вклада будет:

=((250-528,4)²*3+(510-528,4)²*4+(530-528,4)²*17+(550-528,4)²*15+

+(570-528,4)²*6+(590-528,4)²*5)/50=

= (232519,68+1354,24+43,52+6998,4+10383,36+18972,8)/50=

= 270272/50=5405,44

2) Средний размер вклада за месяц для двух банков вместе:

(250*3+510*4+530*17+550*(11+15)+570*(13+6)+590*(18+5)+610*6+63

0*2)/(50+50)=(750+2040+9010+14300+10830+13570+3660+1260)/100=55

4,2 руб. (или (580+528,4)/2=554,2 руб.)

3) Дисперсия вклада для 2-х банков, зависящая от рекламы:

=((550-554,2)²*11+(570-554,2)²*13+(590-554,2)²*18+

+(610-554,2)²*6+(630-554,2)²*2)/50=

=(17,64*11+249,64*13+1281,64*18+3113,64*6+5745,64*2)/50=

=56682/50=1133,64

4) Дисперсия вклада для 2-х банков, зависящая от всех факторов, кроме рекламы:

=((250-554,2)²*3+(510-554,2)²*4+(530-554,2)²*17+(550-554,2)²*15+

+(570-554,2)²*6+(590-554,2)²*5)/50=

=(92537,64*3+1953,64*4+585,64*17+17,64*15+249,64*6+1281,64*5)/50

=303554/50=6071,08

5) Определить общую дисперсию используя правило сложения:

=((250-554,2)²*3+(510-554,2)²*4+(530-554,2)²*17+(550-

554,2)²*(11+15)+

+(570-554,2)²*(13+6)+(590-554,2)²*(18+5)+(610-554,2)²*6+(630-

554,2)²*2)/

/100=(277612,92+7814,56+9955,88+458,64+4743,16+29477,72+18681,84+

+11491,28)/100=360236/100=3602,36

Тема 5

Задача 1

Имеется информация о выпуске продукции (работ, услуг), полученной на основе 10% выборочного наблюдения по предприятиям области:

Группы предприятий по объему продукции, тыс. руб. Число предприятий (f)

До 100

100-200

200-300

300-400

400-500

500 и >

28

52

164

108

36

12

итого 400

Определить:

1) по предприятиям, включенным в выборку:

а) средний размер произведенной продукции на одно предприятие;

б) дисперсию объема производства;

в) долю предприятий с объемом производства продукции более 400 тыс. руб.;

2) в целом по области с вероятностью 0,954 пределы, в которых можно ожидать:

а) средний объем производства продукции на одно предприятие;

б) долю предприятий с объемом производства продукции более 400 тыс. руб.;

3) общий объем выпуска продукции по области.

Решение:

Группы предприятий по объему продукции, тыс. руб. Средний объём продукции на группу, тыс. руб. Число предприятий (f)

До 100

100-200

200-300

300-400

400-500

500 и >

50

150

250

350

450

550

28

52

164

108

36

12

итого 400

1) Средний размер произведенной продукции на одно предприятие:

(50*28+150*52+250*164+350*108+450*36+550*12)/400=110800/400=

=277 тыс. руб.

Дисперсия объема производства:

=((50-277)²*28+(150-277)²*52+(250-277)²*164+(350-277)²*108+

+(450-277)²*36+(550-277)²*12)/400=4948400/400=12371

Доля предприятий с объемом производства продукции более 400 тыс. руб.:

(36+12)/400= 0,12 или 12%

2) Определить в целом по области с вероятностью 0,954 пределы, в которых можно ожидать:

а) средний объем производства продукции на одно предприятие:

111,225

Величина tопределяется по таблице значений функции Лапласа из равенства

.

Следовательно, в нашем случае последнее равенство принимает вид

Ф(t)=0,954/2=0,477.

Из этого равенства по таблице значений интегральной функции Лапласа

находим значение t=2,00.

√n=√400=20

Найдём нижний предел: