Смекни!
smekni.com

Прогноз среднего значения цены (стр. 1 из 3)

Задача 1

Магазин торгует подержанными автомобилями. Статистика их потребительских цен накапливается в базе данных. В магазин пригоняют на продажу очередную партию небольших однотипных автомобилей. Как назначить их цену? Статистический подход позволяет дать прогноз среднего значения цены и доверительных интервалов для него.

Цена автомобиля зависит от множества факторов. К числу объясняющих переменных можно отнести, например, модель автомобиля, фирму-производитель, регион производства (Европа, США, Япония), объем двигателя, фирму-производитель, регион производства (Европа, США, Япония), объем производителя, количество цилиндров, время разгона до 100 км/час, пробег, потребление горючего, год выпуска и т.д. Первые из названных переменных очень важны при ценообразовании, но они – качественные. Традиционный регрессионный анализ, рассматриваемый в этом задании, предназначен для количественных данных. Поэтому, не претендуя на высокую точность, не будем включать их в эконометрическую модель. Сделаем выборку, например, только для автомобилей одной фирмы-производителя. Пусть, например, оказалось, что продано n= 16 таких автомобилей. Для упрощения выберем из базы данных цены yi (i = 1......16) проданных автомобилей и только две объясняющие переменные: возраст хi1 (i = 1, …..16) в годах и мощность двигателя хi2 (i = 1, ….16) в лошадиных силах. Выборка представлена в таблице:

I номер yi , цена, тыс. у.е. хi1 возраст,лет хi2, мощность двигателя
1 11 5,0 155
2 6 7,0 87
3 9,8 5,0 106
4 11 4,0 89
5 12,3 4,0 133
6 8,7 6,0 94
7 9,3 5,0 124
8 10,6 5,0 105
9 11,8 4,0 120
10 10,6 4,0 107
11 5,2 7,0 53
12 8,2 5,0 80
13 6,5 6,0 67
14 5,7 7,0 73
15 7,9 6,0 100
16 10,5 4,0 118

1. Построить поля рассеяния между ценой y и возрастом автомобиля х1, между ценой y и мощностью автомобиля x2. На основе их визуального анализа выдвинуть гипотезу о виде статистической зависимости y от х1 и y от х2. Найти точечные оценки независимых параметров

а0а1 модели y = а0 + а1 х1 + ε и

β1β2 модели y = β0 + а1 х1 + δ

2. Проанализировать тесноту линейной связи между ценой и возрастом автомобиля, а также ценой и мощностью двигателя х2. Для этого рассчитать коэффициенты парной корреляции ryx1 и ryx2 и проверить их отличие от нуля при уровне значимости α = 0,1.

3. Проверить качество оценивания моделей на основе коэффициента детерминации, F- и t- критериев при уровне значимости α = 0,05 и α = 0,10.

4. Проверить полученные результаты с помощью средств MicrocoftExcel.

5. С помощью уравнений регрессии рассчитать доверительные интервалы для среднего значения цены, соответствующие доверительной вероятности 0,9. Изобразить графически поля рассеяния, линии регрессии и доверительные полосы.

На продажу поступила очередная партия однотипных автомобилей. Их возраст х1 равен 3 года. Мощность двигателя х2 = 165 л.с. Рассчитать точечный и интервальный прогноз среднего значения цены поступивших автомобилей по моделям y = а0 + а1 х1 + ε и y = β0 + а1 х1 + δ с доверительной вероятностью 0,9.

Решение:

На основе поля рассеяния, построенного на основе табл. 1, выдвигаем гипотезу о том, что зависимость цены y от возрастаавтомобиля x1 описывается линейной моделью вида

y = а0 + а1 х1 + ε

где а0 и а1 – неизвестные постоянные коэффициенты, а ε – случайная переменная (случайное возмущение), отражающая влияние неучтенных факторов и погрешностей измерений.

Рисунок 1 – Поле рассеяния «возраст автомобиля-цена»

Аналогично, на основе анализа поля рассеяния (рис. 2), также построенного на основе таблицы 1, выдвигаем гипотезу о том, что зависимость цены y от мощности автомобиля x2 описывается линейной моделью вида

y = β0 + β1 х1 + δ


где β0 и β1 – неизвестные постоянные коэффициенты, а ε – случайная переменная (случайное возмущение), отражающая влияние неучтенных факторов и погрешностей измерений.

Рисунок 2 – Поле рассеяния «мощность автомобиля-цена»

На основе табл. 1 исходных данных для вычисления оценок параметров моделей составляется вспомогательная табл. 1.1. Воспользуемся формулами и левой частью таблицы 1.1. для нахождения оценок а0 и а1.

Так как n = 16, получаем

= 145/16=9.0625

= 84.0/16=5.25

= 27.5625

= 365

= 460
i yi xi1 xi12 xi1 yi yi2 i yi xi2 xi22 xi2 yi
1 11 5.0 25 55 121 1 11 155 24025 1705
2 6 7.0 49 42 36 2 6 87 7569 522
3 9,8 5.0 25 49 96,04 3 9,8 106 11236 1038,8
4 11 4.0 16 44 121 4 11 89 7921 979
5 12,3 4.0 16 49,2 151,29 5 12,3 133 17689 1635,9
6 8,7 6.0 36 52,2 75,69 6 8,7 94 8836 817,8
7 9,3 5.0 25 46,5 86,49 7 9,3 124 15376 1153,2
8 10,6 5.0 25 53 112,36 8 10,6 105 11025 1113
9 11,8 4.0 16 47,2 139,24 9 11,8 120 14400 1416
10 10,6 4.0 16 42,4 112,36 10 10,6 107 11449 1134,2
11 5,2 7.0 49 36,4 27,04 11 5,2 53 2809 275,6
12 8,2 5.0 25 41 67,24 12 8,2 80 1600 656
13 6,5 6.0 36 39 42,25 13 6,5 67 4489 435,5
14 5,7 7.0 49 39,9 32,49 14 5,7 73 5329 416,1
15 7,9 6.0 36 47,4 62,41 15 7,9 100 10000 790
16 10,5 4.0 16 42 110,25 16 10,5 118 13924 1239
Сумма 145,1 84.0 460 726,2 1393,15 145,1 1611 167677 15327,1

Следовательно,

а1 =

а0 = 9,0625- (-1,844) * 5.25 = 18,74

Таким образом,

Аналогично находятся оценки коэффициентов второй регрессионной модели y = β0 + β1 х1 + δ. При этом используется правая часть таблицы

= 1611/16=100,6875

= 10137.97

= 153271,1

= 167677

β1 =

β 0 = 9,0625- 0,0099 * 100.6875= 2.0355

Окончательно получаем:

Подставляем соответствующие значения в формулу:

ryx =


ryx1 =

= 0,915

ryx2 =

= 0.8

В нашей задаче t0.95;14 = 1,761

Для ryx1 получаем

=
= 0,955 <1.761

Условие не выполняется, следовательно, коэффициент парной корреляции не значим, гипотеза отвергается, между переменными отсутствует линейная связь

=
= 4.98>1.761

Условие выполняется, следовательно, коэффициент парной корреляции значимый, гипотеза подтверждается, между переменными существует сильная линейная связь

Коэффициент парной корреляции ryx связан с коэффициентом а1 уравнения регрессии

следующим образом

ryx = a1Sx/Sy

где Sx, Sy – выборочные среднеквадратичные отклонения случайных переменных х и y соответственно, рассчитывающиеся по формулам:

Sx1 = √ Sx12

Sx12 = 1/n ∑(xi -

)2

Sy = √ Sy2

Sy2 = 1/n ∑(yi -

)2