Смекни!
smekni.com

Прогноз облікової ставки на основі методу найменших квадратів (стр. 1 из 2)

Міністерство освіти і науки України

Чернігівський державний технологічний університет

Кафедра ФІНАНСИ

Контрольна робота

з дисципліни: “Прогнозування фінансової діяльності”

на тему: ПРОГНОЗ ОБЛІКОВОЇ СТАВКИ НА ОСНОВІ МЕТОДУ НАЙМЕНШИХ КВАДРАТІВ

Чернігів 2008

ЗМІСТ

ЗАВДАННЯ 1

ЗАВДАННЯ 2

ЗАВДАННЯ 3

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ


Завдання 1

Варіант 2, Б1, 138 (00010001010)

Розробити прогноз облікової ставки на наступні два роки і вкажіть точність прогнозу, виходячи з наступних ретроспективних даних :

Таблиця 1.1 - Дані про облікову ставку, відсоток

Найменуваннякраїни 1970 1975 1980 1985 1990 1995 2000 2001 2002 2003 2004
США 4,50 5,50 6,00 11,00 7,50 6,20 5,80 4,15 3,90 3,70 2,75
ФРН 4,00 6,00 3,50 8,10 4,00 4,30 5,10 5,20 4,84 4,30 3,65

Прогноз зробити на основі методу найменших квадратів, по США перевірити прогноз методом змінної середньої.

Головною метою методу найменших квадратів є виконання умови

,

де у – фактичне значення варіації,

У – розрахункове значення варіації ряду.

Для аналізу використаємо лінійну функцію

У =

.

Дана умова рівносильна системі нормальних рівнянь:

(1)

Визначимо таку систему для динамічного ряду облікової ставки США

роки t
y y*t
1970 1 1 4,5 4,5
1975 5 25 5,5 27,5
1980 10 100 6,0 60,0
1985 15 225 11,0 165,0
1990 20 400 7,5 150,0
1995 25 625 6,2 155,0
2000 30 900 5,8 174,0
2001 31 961 4,2 130,2
2002 32 1024 3,9 124,8
2003 33 1089 3,7 122,1
2004 34 1156 2,8 95,2
Всього: 236 6506 61,1 1208,3

Отже маємо наступну систему рівнянь:

-15870

=1128,3

= - 0,071;

11

= 77,86

= 7,078

Таким чином отримали рівняння лінії тренду: Y(t)=-0,071t+7,078

Прогноз облікової ставки США (%) на наступні два роки:

На 2005р.: t =35, Y = -0,071*35+7,078=4,593%

На 2006р.: t =36, Y = -0,071*36+7,078=4,522%

Аналогічний розрахунок зробимо для облікової ставки ФРН.


Визначимо систему рівнянь для динамічного ряду облікової ставки ФРН

роки t
y y*t
1970 1 1 4,00 4,0
1975 5 25 6,00 30,0
1980 10 100 3,50 35,0
1985 15 225 8,10 121,5
1990 20 400 4,00 80,0
1995 25 625 4,30 107,5
2000 30 900 5,10 153,0
2001 31 961 5,20 161,2
2002 32 1024 4,84 154,9
2003 33 1089 4,30 141,9
2004 34 1156 3,65 124,1
Всього: 236 6506 52,99 1113,1

Маємо систему:

-15870

=261,54
= - 0,016

11

= 56,77
=
5,161

Таким чином отримали рівняння лінії тренду: Y(t)=-0,016t+5,161

Прогноз облікової ставки США (%) на наступні два роки:

На 2005р.: t =35, Y = -0,016*35+5,161=4,60%

На 2006р.: t =36, Y = -0,016*36+5,161=4,59%

Перевірку прогнозу по США зробимо методом змінної середньої.

Метод змінної середньої базується на методі плинної середньої, яка дозволяє прогнозувати дані на основі вирівняного ряду, що найбільш точно характеризує тенденцію розвитку. Виберемо за критерій згладжування три роки, матимемо такий вирівняний ряд:

Рік Значення у Згладжені значення у
1970 4,5
1975 5,5 5,3
1980 6,0 7,5
1985 11,0 8,2
1990 7,5 8,2
1995 6,2 6,5
2000 5,8 5,4
2001 4,2 4,6
2002 3,9 3,9
2003 3,7 3,5
2004 2,8 3,3

За допомогою методу найменших квадратів зробимо прогноз по згладжених значеннях:

роки t
y y*t
1975 1 1 5,3 5,3
1980 5 25 7,5 187,5
1985 10 100 8,2 820,0
1990 15 225 8,2 1845,0
1995 20 400 6,5 2600,0
2000 25 625 5,4 3375,0
2001 30 900 4,6 4140,0
2002 31 961 3,9 3747,9
2003 32 1024 3,5 3584,0
2004 33 1089 3,3 3593,7
Всього: 202 5350 59,60 23898,4

Отже маємо наступну систему рівнянь:

-12696

=-226944,8

= 17,86;

10

= -3548,12

= -354,8

Таким чином отримали рівняння лінії тренду: Y(t)=17,86t-354,8

Прогноз облікової ставки США (%) на наступні два роки:

На 2005р.: t =34, Y = 17,86*34-354,8=252,44%

На 2006р.: t =35, Y = 17,86*35-354,8=270,3%

Завдання 2

23×7 (0000111×111).

Знайдіть лінійну залежність рентабельності фірми від наявних сумарних активів і середньорічної вартості нормованих обертових засобів, використовуючи методику множинної регресії і визначити прогнозні значення рентабельності при наступних значеннях:

а) сума активів б) вартість обертових засобів

1. 3,8 0,7

2. 9,8 1,7

3. 19,4 8,9

4. 32,2 17,1

5. 100,4 20,8

Таблиця 2.1 -Значення показників по різним підприємствам

№ п/п Сумарні активи, млн.грн. Середньорічна вартість обертових засобів, млн. грн. Рентабельність, проценти
1 16,2 4,2 18
2 30,1 6,1 27
3 2,7 0,7 10
4 100,1 36,2 45
5 30,6 11,1 25
6 2,8 1,3 11
7 3,8 1,5 19

Зробити висновки по визначеній моделі:

а) оцінити вплив незалежних змінних на залежну;

б) визначити множинні коефіцієнти детермінації та кореляції;

в) побудувати точковий та інтервальний пронози для знайденої моделі

Лінійна залежність рентабельності (Y) від сумарних активів (X1) та середньорічної вартості обертових засобів (Х2) матиме вигляд :

У=а01х12х2.

Для визначення коефіцієнтів регресії складемо і розв’яжемо систему нормальних рівнянь:


Таблиця 2.2 - Проміжні розрахунки

номер х1 х2 у х1*х1 х2*х2 х1*х2 у*х1 у*х2
1 16,2 4,2 18 262 17,64 68,04 291,6 75,6
2 30,1 6,1 27 906 37,21 183,61 812,7 164,7
3 2,7 0,7 10 7 0,49 1,89 27 7
4 100,1 36,2 45 10020 1310,44 3623,62 4504,5 1629
5 30,6 11,1 25 1310 123,21 339,66 765 277,5
6 2,8 1,3 11 8 1,69 3,64 30,8 14,3
7 3,8 1,5 19 14 2,25 5,7 72,2 28,5
Всього 186,3 61,1 155 12527 1492,93 4226,16 6503,8 2196,6

Отримаємо наступну систему лінійних рівнянь:

7,00а0 + 186,3 а1 + 61,1 а2 = 155
186,3 а0 + 1492,93 а1 +4226,16 а2 = 6503,8
61,1 а0 + 4226,16 а1 +1492,93 а2 = 2196,6

Запишемо матриці А таC:

7,00 186,3 61,1
А = 186,3 1492,93 4226,16
61,1 4226,16 1492,93

С =

;