Смекни!
smekni.com

Прогнозирование и риски (стр. 1 из 6)

Реферат

По эконометрике

Эконометрика прогнозирования и риска

Методы социально-экономического прогнозирования

Кратко рассмотрим различные методы прогнозирования (предсказания, экстраполяции), используемые в социально-экономической области. По вопросам прогнозирования имеется большое число публикаций. Как часть эконометрики существует научная и учебная дисциплина "Математические методы прогнозирования". Ее целью является разработка, изучение и применение современных математических методов эконометрического (в частности, статистического, экспертного, комбинированного) прогнозирования социально-экономических явлений и процессов, причем методы должны быть проработаны до уровня, позволяющего их использовать в практической деятельности экономиста, инженера и менеджера. К основным задачам этой дисциплины относятся разработка, изучение и применение современных математико-статистических методов прогнозирования (в том числе непараметрических методов наименьших квадратов с оцениванием точности прогноза, адаптивных методов, методов авторегрессии и др.), развитие теории и практики экспертных методов прогнозирования, в том числе методов анализа экспертных оценок на основе статистики нечисловых данных, методов прогнозирования в условиях риска и комбинированных методов прогнозирования с использованием совместно экономико-математических и эконометрических (как статистических, так и экспертных) моделей. Теоретической основой методов прогнозирования являются математические дисциплины (прежде всего, теория вероятностей и математическая статистика, дискретная математика, исследование операций), а также экономическая теория, экономическая статистика, менеджмент, социология, политология и другие социально-экономические науки.

Как общепринято со времен основоположника научного менеджмента Анри Файоля, прогнозирование и планирование - основа работы менеджера. Сущность эконометрического прогнозирования состоит в описании и анализе будущего развития, в отличие от планирования, при котором директивным образом задается будущее движение. Например, вывод прогнозиста может состоять в том, что за час мы сможем отойти пешком от точки А не более чем на 5 км, а указание плановика - в том, что через час необходимо быть в точке Б. Ясно, что если расстояние между А и Б не более 5 км, то план реален (осуществим), а если более 10 км - не может быть осуществлен в заданных условиях. Необходимо либо отказаться от нереального плана, либо перейти на иные условия его реализации, например, двигаться не пешком, а на автомашине. Рассмотренный пример демонстрирует возможности и ограниченность методов прогнозирования. А именно, эти методы могут быть успешно применены при условии некоторой стабильности развития ситуации и отказывают при резких изменениях.

Один из вариантов применения методов прогнозирования - выявление необходимости изменений путем "приведения к абсурду". Например, если население Земли каждые 50 лет будет увеличиваться вдвое, то нетрудно подсчитать, через сколько лет на каждый квадратный метр поверхности Земли будет приходиться по 10000 человек. Из такого прогноза следует, что закономерности роста численности населения должны измениться.

Учет нежелательных тенденций, выявленных при прогнозировании, позволяет принять необходимые меры для их предупреждения, а тем самым помешать осуществлению прогноза.

Есть и самоосуществляющиеся прогнозы. Например, если в вечерней телевизионной передаче будет сделан прогноз о скором банкротстве определенного банка, то наутро многие вкладчики этого банка пожелают получить свои деньги, у входа в банк соберется толпа, а банковские операции придется остановить. Такую ситуацию журналисты описывают словами: "Банк лопнул". Обычно для этого достаточно, чтобы в один "прекрасный" (для банка) момент вкладчики пожелали изъять заметную долю (скажем, 30%) средств с депозитных счетов.

Прогнозирование - частный вид моделирования как основы познания и управления.

Роль прогнозирования в управлении страной, отраслью, регионом, предприятием очевидна. Необходимы учет СТЭП-факторов (социальных, технологических, экономических, политических), факторов конкурентного окружения и научно-технического прогресса, а также прогнозирование расходов и доходов предприятий и общества в целом (в соответствии с жизненным циклом продукции - во времени и по 11-и стадиям международного стандарта ИСО 9004). Проблемы внедрения и практического использования математических методов эконометрического прогнозирования связаны прежде всего с отсутствием в нашей стране достаточно обширного опыта подобных исследований, поскольку в течение десятилетий планированию отдавался приоритет перед прогнозированием.

Статистические методы прогнозирования.

Простейшие методы восстановления используемых для прогнозирования зависимостей исходят из заданного временного ряда, т.е. функции, определенной в конечном числе точек на оси времени. Задачам анализа и прогноза временных рядов посвящена глава 6 выше. Временной ряд при этом часто рассматривается в рамках вероятностной модели, вводятся иные факторы (независимые переменные), помимо времени, например, объем денежной массы (агрегат М2). Временной ряд может быть многомерным, т.е. число откликов (зависимых переменных) может быть больше одного. Основные решаемые задачи - интерполяция и экстраполяция. Метод наименьших квадратов в простейшем случае (линейная функция от одного фактора) был разработан К.Гауссом более двух столетий назад, в 1794-1795 гг. (см. главу 5). Могут оказаться полезными предварительные преобразования переменных.

Опыт прогнозирования индекса инфляции и стоимости потребительской корзины накоплен в Институте высоких статистических технологий и эконометрики. При этом оказалось полезным преобразование (логарифмирование) переменной - текущего индекса инфляции. Характерно, что при стабильности условий точность прогнозирования оказывалась достаточно удовлетворительной - 10-15 %. Однако спрогнозированное на осень 1996 г. значительное повышение уровня цен не осуществилось. Дело в том, что руководство страны перешло к стратегии сдерживания роста потребительских цен путем массовой невыплаты зарплаты и пенсий. Условия изменились - и статистический прогноз оказался непригодным. Влияние решений руководства Москвы проявилось также в том, что в ноябре 1995 г. (перед парламентскими выборами) цены в Москве упали в среднем на 9,5%, хотя обычно для ноября характерен более быстрый рост цен, чем в другие месяцы года, кроме декабря и января.

Наиболее часто используется метод наименьших квадратов при нескольких факторах (2-5). Метод наименьших модулей и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше. Большую роль играет традиция и общий невысокий уровень знаний об эконометрических методах прогнозирования.

Оценивание точности прогноза - необходимая часть процедуры квалифицированного прогнозирования. При этом обычно используют вероятностно-статистические модели восстановления зависимости, например, строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Так, нами предложены и изучены методы доверительного оценивания точки наложения (встречи) двух временных рядов и их применения для оценки динамики технического уровня собственной продукции и продукции конкурентов, представленной на мировом рынке.

Применяются также эвристические приемы, не основанные на какой-либо теории: метод скользящих средних, метод экспоненциального сглаживания.

Адаптивные методы прогнозирования позволяют оперативно корректировать прогнозы при появлении новых точек. Речь идет об адаптивных методах оценивания параметров моделей и об адаптивных методах непараметрического оценивания. Отметим, что с развитием вычислительных мощностей компьютеров проблема сокращения объемов вычисления теряет свое значение.

Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения - основной на настоящий момент эконометрический аппарат прогнозирования. Подчеркнем, что нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно. Однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной центральной предельной теореме теории вероятностей и эконометрической технологии линеаризации. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от 0 в непараметрической постановке, строить доверительные границы для прогноза.

Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Дело в том, что априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен, желательно его сократить, и крупное направление современных эконометрических исследований посвящено методам отбора "информативного множества признаков". Однако эта проблема пока еще окончательно не решена. Проявляются необычные эффекты. Так, в главе 5 установлено, что обычно используемые оценки степени полинома имеют геометрическое распределение. Перспективны непараметрические методы оценивания плотности вероятности и их применения для восстановления регрессионной зависимости произвольного вида. Наиболее общие постановки в этой области получены с помощью подходов статистики нечисловых данных (см. главу 8).

К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса-Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах.