Смекни!
smekni.com

Многомерный статистический анализ (стр. 6 из 9)

О построении диагностических правил. Начнем с обсуждения одного распространенного заблуждения. Иногда рекомендуют сначала построить систему диагностических классов, а потом в каждом диагностическом классе отдельно проводить регрессионный анализ (в классическом смысле) или применять иные методы многомерного статистического анализа. Однако обычно забывают, что при этом нельзя опираться на вероятностную модель многомерного нормального распределения, так как распределение результатов наблюдений, попавших в определенный кластер, будет отнюдь не нормальным, а усеченным нормальным (усечение определяется границами кластера).

Процедуры построения диагностических правил делятся на вероятностные и детерминированные. К первым относятся так называемые задачи расщепления смесей. В них предполагается, что распределение вновь поступающего случайного элемента является смесью вероятностных законов, соответствующих диагностическим классам. Как и при выборе степени полинома в регрессии (см. предыдущий пункт настоящей главы), при анализе реальных социально-экономических данных встает вопрос об оценке числа элементов смеси, т.е. числа диагностических классов. Были изучены результаты применения обычно рекомендуемого критерия Уилкса для оценки числа элементов смеси. Оказалось (см. статью [8]), что оценка с помощью критерия Уилкса не является состоятельной, асимптотическое распределение этой оценки – геометрическое, как и в случае задачи восстановления зависимости в регрессионном анализе (см. выше). Итак, продемонстрирована несостоятельность обычно используемых оценок. Для получения состоятельных оценок достаточно связать уровень значимости в критерии Уилкса с объемом выборки, как это было предложено и для задач регрессии.

Как уже отмечалось, задачи построения системы диагностических классов целесообразно разбить на два типа: с четко разделенными кластерами (задачи кластер-анализа) и с условными границами, непрерывно переходящими друг в друга классами (задачи группировки). Такое деление полезно, хотя в обоих случаях могут применяться одинаковые алгоритмы. Сколько же существует алгоритмов построения системы диагностических правил? Иногда называют то или иное число. На самом же деле их бесконечно много, в чем нетрудно убедиться.

Действительно, рассмотрим один определенный алгоритм - алгоритм средней связи. Он основан на использовании некоторой меры близости d(x,y) между объектами x и у. Как он работает? На первом шаге каждый объект рассматривается как отдельный кластер. На каждом следующем шаге объединяются две ближайших кластера. Расстояние между объектами рассчитывается как средняя связь (отсюда и название алгоритма), т.е. как среднее арифметическое расстояний между парами объектов, один из которых входит в первый кластер, а другой - во второй. В конце концов все объекты объединяются вместе, и результат работы алгоритма представляет собой дерево последовательных объединений (в терминах теории графов), или "Дендрограмму". Из нее можно выделить кластеры разными способами. Один подход - исходя из заданного числа кластеров. Другой - из соображений предметной области. Третий - исходя из устойчивости (если разбиение долго не менялось при возрастании порога объединения - значит оно отражает реальность). И т.д.

К алгоритму средней связи естественно сразу добавить алгоритм ближайшего соседа (когда расстоянием между кластерами называется минимальное из расстояний между парами объектов, один из которых входит в первый кластер, а другой - во второй) и алгоритм дальнего соседа (когда расстоянием между кластерами называется максимальное из расстояний между парами объектов, один из которых входит в первый кластер, а другой - во второй).

Каждый из трех описанных алгоритмов (средней связи, ближайшего соседа, дальнего соседа), как легко проверить, порождает бесконечное (континуальное) семейство алгоритмов кластер-анализа. Дело в том, что величина d a(x,y), a>0, также является мерой близости между x и у и порождает новый алгоритм. Если параметр а пробегает отрезок, то получается бесконечно много алгоритмов классификации.

Каким из них пользоваться при обработке данных? Дело осложняется тем, что практически в любом пространстве данных мер близости различных видов существует весьма много. Именно в связи с обсуждаемой проблемой следует указать на принципиальное различие между кластер-анализом и задачами группировки.

Если классы реальны, естественны, существуют на самом деле, четко отделены друг от друга, то любой алгоритм кластер-анализа их выделит. Следовательно, в качестве критерия естественности классификации следует рассматривать устойчивость относительно выбора алгоритма кластер-анализа.

Проверить устойчивость можно, применив к данным несколько подходов, например, столь непохожие алгоритмы, как «ближнего соседа» и «дальнего соседа». Если полученные результаты содержательно близки, то они адекватны действительности. В противном случае следует предположить, что естественной классификации не существует, задача кластер-анализа не имеет решения, и можно проводить только группировку.

Как уже отмечалось, часто применяется т.н. агломеративный иерархический алгоритм "Дендрограмма", в котором вначале все элементы рассматриваются как отдельные кластеры, а затем на каждом шагу объединяются два наиболее близких кластера. Для работы «Дендрограммы» необходимо задать правило вычисления расстояния между кластерами. Оно вычисляется через расстояние d(x,у) между элементами х и у. Поскольку d a(x,y) при 0<a<1 также расстояние, то, как правило, существует бесконечно много различных вариантов этого алгоритма. Представим себе, что они применяются для обработки одних и тех же реальных данных. Если при всех а получается одинаковое разбиение элементов на кластеры, т.е. результат работы алгоритма устойчив по отношению к изменению а (в смысле общей схемы устойчивости, рассмотренной в главе 10 ниже), то имеем «естественную» классификацию. В противном случае результат зависит от субъективно выбранного исследователем параметра а, т.е. задача кластер-анализа неразрешима (предполагаем, что выбор а нельзя специально обосновать). Задача группировки в этой ситуации имеет много решений. Из них можно выбрать одно по дополнительным критериям.

Следовательно, получаем эвристический критерий: если решение задачи кластер-анализа существует, то оно находится с помощью любого алгоритма. Целесообразно использовать наиболее простой.

Проблема поиска естественной классификации. Существуют различные точки зрения на эту проблему. На Всесоюзной школе-семинаре «Использование математических методов в задачах классификации» (г. Пущино, 1986 г.), в частности, были высказаны мнения, что естественная классификация:

- закон природы;

- основана на глубоких закономерностях, тогда как искусственная классификация - на неглубоких;

- для конкретного индивида та, которая наиболее быстро вытекает из его тезауруса;

- удовлетворяет многим целям; цель искусственной классификации задает человек;

- классификация с точки зрения потребителя продукции;

- классификация, позволяющая делать прогнозы;

- имеет критерием устойчивость.

Приведенные высказывания уже дают представление о больших расхождениях в понимании «естественной классификации». Этот термин следует признать нечетким, как, впрочем, и многие другие термины, как социально-экономические, научно-технические, так и используемые в обыденном языке. Нетрудно подробно обоснована нечеткость естественного языка и тот факт, что "мы мыслим нечетко", что однако не слишком мешает нам решать производственные и жизненные проблемы. Кажущееся рациональным требование выработать сначала строгие определения, а потом развивать науку - невыполнимо. Следовать ему - значит отвлекать силы от реальных задач. При системном подходе к теории классификации становится ясно, что строгие определения можно надеяться получить на последних этапах построения теории. Мы же сейчас находимся чаще всего на первых этапах. Поэтому, не давая определения понятиям «естественная классификация»и «естественная диагностика», обсудим, как проверить на «естественность» классификацию (набор диагностических классов), полученную расчетным путем.

Можно выделить два критерия «естественности», по поводу которых имеется относительное согласие:

А. Естественная классификация должна быть реальной, соответствующей действительному миру, лишенной внесенного исследователем субъективизма;

Б. Естественная классификация должна быть важной или с научной точки зрения (давать возможность прогноза, предсказания новых свойств, сжатия информации и т.д.), или с практической.

Пусть классификация проводится на основе информации об объектах, представленной в виде матрицы «объект-признак» или матрицы попарных расстояний (мер близости). Пусть алгоритм классификации дал разбиение на кластеры. Как можно получить доводы в пользу естественности этой классификации? Например, уверенность в том, что она - закон природы, может появиться только в результате длительного ее изучения и практического применения. Это соображение относится и к другим из перечисленных выше критериев, в частности к Б (важности). Сосредоточимся на критерии А (реальности).

Понятие «реальности» кластера требует специального обсуждения. (оно начато в работе [8]). Рассмотрим существо различий между понятиями «классификация» и «группировка». Пусть, к примеру, необходимо деревья, растущие в определенной местности, разбить на группы находящихся рядом друг с другом. Ясна интуитивная разница между несколькими отдельными рощами, далеко отстоящими друг от друга и разделенными полями, и сплошным лесом, разбитым просеками на квадраты с целью лесоустройства. Однако формально определить эту разницу столь же сложно, как определить понятие «куча зерен», чем занимались еще в Древней Греции (одно зерно не составляет кучи, два зерна не составляют кучи,…, если к тому, что не составляет кучи, добавить еще одно зерно, то куча не получится; значит - по принципу математической индукции - никакое количество зерен не составляет кучи; но ясно, что миллиард зерен - большая куча зерен - подсчитайте объем!).