А вот при подборе вида модели знаменатель дроби, оценивающей остаточную дисперсию, приходится корректировать на число параметров. Если этого не делать, то придется заключить, что многочлен второй степени лучше соответствует данным, чем линейная функция, многочлен третьей степени лучше приближает исходные данные, чем многочлен второй степени, и т.д. В конце концов доходим до многочлена степени (n-1) с n коэффициентами, который проходит через все заданные точки. Но его прогностические возможности, скорее всего, существенно меньше, чем у линейной функции. Излишнее усложнение эконометрических моделей вредно.
Типовое поведение скорректированной оценки остаточной дисперсии
в зависимости от параметра m в случае расширяющейся системы эконометрических моделей выглядит так. Сначала наблюдаем заметное убывание. Затем оценка остаточной дисперсии колеблется около некоторой константы (теоретического значения дисперсии погрешности).
Поясним ситуацию на примере эконометрической модели в виде многочлена
Пусть эта модель справедлива при
Следовательно, скорректированная оценка остаточной дисперсии будет колебаться около указанного предела. Поэтому в качестве оценки неизвестной эконометрику степени многочлена (полинома) можно использовать первый локальный минимум скорректированной оценки остаточной дисперсии, т.е.
В работе [3] найдено предельное распределение этой оценки степени многочлена.
Теорема. При справедливости некоторых условий регулярности
где
Таким образом, предельное распределение оценки m* степени многочлена (полинома) является геометрическим. Это означает, в частности, что оценка не является состоятельной. При этом вероятность получить меньшее значение, чем истинное, исчезающе мала. Далее имеем:
Разработаны и иные методы оценивания неизвестной степени многочлена, например, с помощью многократного применения процедуры проверки адекватности регрессионной зависимости с помощью статистики Фишера (см. работу [3]). Предельное поведение оценок - таково же, как в приведенной выше теореме, только значение параметра
Линейный и непараметрические парные коэффициенты корреляции. Термин "корреляция" означает "связь". В эконометрике этот термин обычно используется в сочетании "коэффициенты корреляции".
Рассмотрим способы измерения связи между двумя случайными переменными. Пусть исходными данными является набор случайных векторов
Если rn = 1, то
Коэффициенты корреляции типа rn используются во многих алгоритмах многомерного статистического анализа эконометрических данных. В теоретических рассмотрениях часто считают, что случайный вектор имеет многомерное нормальное распределение. Распределения реальных данных, как правило, отличны от нормальных (см. главу 4). Почему же распространено представление о многомерном нормальном распределении? Дело в том, что теория в этом случае проще. В частности, равенство 0 теоретического коэффициента корреляции (см. приложение 1) эквивалентно независимости случайных величин. Поэтому проверка независимости сводится к проверке статистической гипотезы о равенстве 0 теоретического коэффициента корреляции. Эта гипотеза принимается, если
Если случайные вектора
(сходимость по вероятности).
Более того, выборочный коэффициент корреляции является асимптотически нормальным. Это означает, что
где
Здесь под
(см. приложение 1 в конце книги).
Для расчета непараметрического коэффициента ранговой корреляции Спирмена необходимо сделать следующее. Для каждого xiрассчитать его ранг ri в вариационном ряду, построенном по выборке
Табл.2. Данные для расчета коэффициентов корреляции
i | 1 | 2 | 3 | 4 | 5 |
xi | 5 | 10 | 15 | 20 | 25 |
yi | 6 | 7 | 30 | 81 | 300 |
ri | 1 | 2 | 3 | 4 | 5 |
qi | 1 | 2 | 3 | 4 | 5 |
Для данных табл.2 коэффициент линейной корреляции равен 0,83, непосредственной линейной связи нет. А вот коэффициент ранговой корреляции равен 1, поскольку увеличение одной переменной однозначно соответствует увеличению другой переменной. Во многих экономических задачах, например, при выборе инвестиционных проектов для осуществления, достаточно именно монотонной зависимости одной переменной от другой.
Поскольку суммы рангов и их квадратов нетрудно подсчитать, то коэффициент ранговой корреляции Спирмена равен
Отметим, что коэффициент ранговой корреляции Спирмена остается постоянным при любом строго возрастающем преобразовании шкалы измерения результатов наблюдений. Другими словами, он является адекватным в порядковой шкале (см. главу 3), как и другие ранговые статистики (см. статистики Вилкоксона, Смирнова, типа омега-квадрат для проверки однородности независимых выборок в главе 4 и общее обсуждение в главе 8).
Широко используется также коэффициент ранговой корреляции
Непараметрическая регрессия. Рассмотрим общее понятие регрессии как условного математического ожидания. Пусть случайный вектор