Смекни!
smekni.com

Критерии оптимальности в эколого-математических моделях (стр. 5 из 6)

. (28)

Погрешность оценки (26) равна

. (29)
Математическое ожидание погрешности и ее дисперсия:

. (30)

Таким образом, оценка (26) - несмещенная и состоятельная. Среднее квадратическое отклонение оценки (26)

.

На практике принимают

. (31)

3.5 Определение законов распределения случайной величины

Экспериментальное определение законов распределения случайных величин сводится к определению оценок вероятностей, математических ожиданий, дисперсий и средних квадратических отклонений [1-3].

Если случайная величина X - дискретная, то определяются

,
и оценки
значений функции вероятности
или оценки
значений функции распределения
.

Если случайная величина X- непрерывная, то определяются Мх , Dхи оценки fx(x),Fx(x) плотности вероятности fx(x) и функции распределения Fx(x).

При оценивании законов распределения непрерывной случайной величины процесс обработки экспериментальных данных - реализаций х ,...,xN,, начинается с выбора границ а и b> а интервала, заключающего возможные значения X, и деления этого интервала на kравных элементарных промежутков с = (b - a)/ k.

При расчете с значения а и b следует для удобства округлять,

принимая, например, вместо b = 3,341,а = -2,63 значения 3,4 и -2,7. Во всех случаях округление производится в сторону увеличения разности b- а. Значение kвыбирается в пределах от 8 до 20. Удобно принять k= 10.

После этого определяют границы

всех элементарных промежутков и составляют таблицу (табл.1), в которой х'0=а,x'k=b.Значение
- это число реализаций X,оказавшихся в пределах j-ого интерва­ла от
, до
. Значения
и
:

(32)
. (33)

При группировке реализаций Xпо отдельным интервалам может оказаться что некоторые из них придутся точно на границу двух смежных промежутков. В этих случаях необходимо прибавить к чис­лам

и
смежных интервалов по 1/2.

Таблица 1

По данным таблицы могут быть построены эмпирические гистограмма и график функции распределения.

Затем возникает весьма сложная задача подбора аналитического закона распределения, достаточно хорошо согласующегося с результатами эксперимента.

Основанием для выбора аналитического выражения плотности вероятности fx(x) могут служить соображения о том, чтобы простейшие числовые характеристики теоретической случайной величины были равны экспериментальным значениям этих характеристик. Если, например, теоретический закон определяется двумя параметрами, то их выбирают так, чтобы совпали два момента (

).

3.6 Критерий интервальных оценок

Располагая результатами эксперимента согласно (31) рассчитывают средние квадратические отклонения:

;
. (34)

Согласно (8) рассчитываются доверительные интервалы

и границы изменения ВВХ

, (35)

соответствующие доверительной вероятности

и
.

Располагая выбранным аналитическим выражением плотности вероятности fx(x), рассчитываются теоретические значения:

(36)

Критерием согласия теоретического и экспериментального распределения является соблюдение неравенств:

(37)

Критерий

Рассчитав

согласно (35), находят значения

(38)

и рассчитывают

. (39)

Если расхождение между экспериментальным и теоретическим распределением несущественно, то распределение случайной величины (39) близко к нормальному с математическим ожиданием

и

средним квадратическим отклонением

, где s - так называемое число степеней свободы и согласно (8) с доверительной вероятностью рд = 0,997 справедливо неравенство

. (40)

Число степеней свободы s = k - и - это разность между числом интервалов k, выбираемых произвольно, и числом условий и, которым должно удовлетворять эмпирическое распределение случайной величины. Этих условий обычно три: сумма всех

равна единице, математическое ожидание равно
дисперсия равна

3.7 Сравнение математических ожиданий и дисперсий

Особой задачей, возникающей при экспериментальном исследовании случайных величин, является сравнение экспериментальных математических ожиданий

и дисперсий
, полученных в результате N1, и N2независимых измерений случайных вели­чин X1и X2.