, (9)
где - независимые случайные величины с одинаковыми , т.е. с числовыми характеристиками, равными истинным, но неизвестным априори, их значениям.
Математическое ожидание погрешности оценки среднего равно
. (10)
. (11)
Среднее квадратическое отклонение оценки математического ожидания
. (12)
Как видно из (10,11) оценка (9) – несмещенная, состоятельная и эффективная.
,
откуда, приравнивая правые части последних равенств, окончательно определяем выражение для расчета требуемого объема выборки
.
Здесь значение СКО случайной величины может задаваться априорно, либо определяться экспериментально по выборке меньшего чем N объема.
Определение оценки дисперсии и ее среднего квадратического отклонения
Оценка дисперсии как экспериментальное значение второго центрального момента случайной величины Xможет быть вычислена по формуле
.
Так как значение априори неизвестно, то принимают и тогда
. (13)
Математическое ожидание погрешности оценки равно
, (14)
что означает, что оценка (14) является смещенной.
Смещение пропорционально Dxи обратно пропорционально N. Это означает, что оценка Dx,полученная согласно (14), - состоятельная.
Смещение устраняется с переходом к .
При этом вместо (13) имеем
. (15)
При больших значениях N результаты расчета по формулам (13)и (15)практически будут одинаковыми.
Выражение для дисперсии оценки (15), равной дисперсии погрешности , при нормальном виде закона распределения X (для худшего случая) можно получить следующее [1-3]:
. (16)
Зависимость среднего квадратического отклонения от его точного значения определяется выражением
.
3.3Определение корреляционного момента и коэффициента корреляции
Экспериментальное значение корреляционного момента Rxy как оценка смешанного центрального момента m11 системы двух случайных величин равно
Так как значения Мх, Мунеизвестны, то принимают , и тогда
ИЛИ
. (17)
Погрешность оценки
(18)
Математическое ожидание погрешности (18)
Это означает, что оценка (17) - смещена и равна
. (19)
Можно показать, что она является и состоятельной.
Смещение устраняется с переходом от к . При
этом вместо (17) имеем
. (20)
Для дисперсии оценки (17), равной дисперсии погрешности (18), можно получить [1-3]
, (21)
где - четвертый смешанный центральный момент системы (XY). При Y = Xвыражения (20) и (21) превращаются в (15), (16). Если система (XY) распределена нормально, то и согласно (21)
Так как значения Rxy, Dx, Dyнеизвестны, то практически используется приближение
. (22)
Среднее квадратическое значение погрешности (18) равно среднему квадратическому отклонению оценки (20):
. (23)
Оценка коэффициента корреляции определяется согласно
. (24)
Если оценки , получены в результате одной серии наблюдений, а оценка – врезультате другой, то их погрешности , – независимые случайные величины, являющиеся аргументами линейной функции:
. (25)
Значение рассчитывается согласно (15), доверительный интервал – по формуле (8).
3.4 Определение вероятности события
Экспериментальное значение вероятности Р некоторого события - это частость [1-3]
,(26)
причем число п появлений события в серии из N испытаний можно рассматривать как сумму N независимых случайных слагаемых:
,(27)
каждое из которых может принимать только два значения 1 и 0 с вероятностями P и 1 – P.
Математическое ожидание и дисперсия случайной величины Xi: