Смекни!
smekni.com

Критерии оптимальности в эколого-математических моделях (стр. 2 из 6)

В работе также был рассмотрен вопрос об интерпретации введенного таким образом “биологического” действия. Описание в терминах кинетической и потенциальной энергии неприемлемо, поскольку ведет к неизменности общей энергии системы (экологические системы обычно подразумеваются открытыми). По аналогии с физикой, где действие разделено на свободное движение и взаимодействие, предлагалось рассматривать действие как сумму члена, описывающего популяцию, которая не подвержена помехам в росте, и члена V(x), описывающего внешнее влияние среды на популяцию. Однако, подобная интерпретация хорошо описывает лишь случай V(x) = 0, когда применение вариационного принципа приводит к уравнению экспоненциального роста. Сам М.Гатто и его соавторы описывали действие как цену роста.

По мнению Дж.Вебба, применение вариационного принципа позволяет сместить акцент с поведения системы на факторы, которые его определяют, а также делает возможным разделение внутреннего поведения популяции и эффектов внешней среды.


3 Модели случайных стационарных процессов и принципы, на которых они основываются

Модели случайных стационарных процессов рассматривают систему как совокупность взаимодействующих элементов со случайными свойствами. В модель вводиться функция распределения показателей состояния и глобальная характеристика взаимодействия компонентов (энтропия, энергия или вещественый результат). Область применения рассматриваемых моделей ограничивается описанием неструктурированных гомогенных систем, когда необходимо оценить воздействие многих факторов на результирующий признак

Статистические модели строятся при допущении, что исследуемый процесс случаен и может быть изучен с помощью статистических методов анализа систем. Они включают: эмпирические- и динамические статистические модели, корреляционный и факторный анализ, многомерное шкалирование, анализ временных рядов. Для снижения размерности статистических моделей используется ряд методов, например выделение главных компонент в регрессионных уравнениях и гармонических рядах.

3.1 Эргодичность стационарного случайного процесса

Для некоторых процессов вдостаточно длинных реализациях случайного процесса содержатся все его значения. Следователь­но, помимо статистическихсредних характеристик процесса, определяемых пу­тем усреднения по ансамблю возможных значений процесса, имеется возможность определить временныесредние харак­теристики путем усреднения по времени до­статочно длинной реализации процесса.

Случайные процессы, у которых стати­стические и временные средние характери­стики совпадают, называются э р г о д и ч е с к и м и. Далеко не все случайные про­цессы удовлетворяют условию эргодично­сти. Однако многие стационарные процессы этому условию удовлетворяют и для них (несмотря на флюктуации временных сред­них характеристик от одной реализации к другой) с вероятностью, равной единице, временные средние совпадают со статисти­ческими средними:

где

- реализации процесса, сдвинутые на
.

Можно показать (теорема Винера – Хинчина), что функция корреляции стационарного случайного процесса является Фурье-преобразованием некоторой функции частоты

:

()

Физический смысл

следует из условия
, при котором
- средняя мощность процесса, а следовательно
- его спектральная плотность мощности (спектр мощности).

Иначе говоря, функция корреляции со­держит полную информацию о распределе­нии энергии процесса по частоте, но не мо­жет дать сведений о частотном распределе­нии амплитуд и фаз спектральных состав­ляющих реализаций процесса.

Многие распространенные случайныепроцессы приближенно можно описать кор­реляционной функцией вида

и соответствующей ей спектральной плот­ностью

.

Итак, спектр мощности и функция кор­реляции не являются независимыми харак­теристиками случайного процесса. Обе эти характеристики определяют степень вероят­ностной связи между значениями сигнала в различные моменты времени или, как ино­гда говорят, степеньпоследейст­вияпроцесса. Процесс считается не имею­щим последствия, если вероятность наступ­ления последующих значений процесса не зависит от того, какими были предыдущие значения. В процессах с последействием, на­оборот, предыдущее значение процесса влия­ет на вероятность наступления последу­ющего или ряда последующих значений процесса. Чем сильнее выражено последей­ствие процесса, тем больше максимальный интервал времени

, в течение которого данное значение процесса еще влияет на следующие за ним значения.

Функция корреляции характеризует сте­пень влияния одного значения процесса на последующие в зависимости от интервала времени

, разделяющего эти значения. Как правило, функция корреляции уменьшается с ростом
.

Интервал

, на котором функция корреляции имеет еще заметную величину, называется интерваломкорреляции.Чем больше интервал корреляции, тем более удаленные значения процесса имеют еще вероятностные взаимосвязи.

Аналогично этому за ширинуспектра мощности принимают интервал частот

для которого значения
име­ют еще заметную величину.

Можно показать, что интервал корреля­ции и ширина спектра мощности связаны обратной зависимостью:

где

- постоянная величина ( база сигнала).

Так как наиболее полным описанием случайной последовательности является функция распределения вероятностей ее значений, то задача тестирования в общем случае сводится к получению эмпирических вероятностных характеристик по доступным выборочным данным и проверке гипотез об их соответствии некоторым стандартным характеристикам, определяющим различные классы случайных последовательностей и отдельные их свойства. Часто в качестве стандартной случайной последовательности (СП)

выступает стандартная случайная последовательность, например, с нормальным распределением
и числовыми характеристиками:
- математическое ожидание и
- дисперсия случайной последовательности.

Общий алгоритм тестирования случайной последовательности с учетом вводимой стандартной случайной последовательности может включать следующие этапы.

1. Определение эмпирических вероятностных характеристик тестируемой случайной последовательности (математического ожидания, дисперсии, корреляционного момента, вероятностей событий и функции распределения вероятностей). Важно, чтобы качество полученных эмпирических оценок соответствовало выдвигаемым априорно требованиям к допустимому отклонению от истинных значений характеристик (доверительному интервалу и доверительной вероятности), а также определялось требуемым для этого размером выборки. На основе полученных характеристик могут быть установлены свойства симметрии распределения (совпадение значений среднего, моды и медианы, либо равенство значений вероятностей превышения и не превышения среднего значения) и близости его формы к некоторому стандартному, например, к нормальному.

2. Построение гистограммы вероятностей и восстановление эмпирического распределения случайной последовательности на основе полученных вероятностных характеристик и выдвижение гипотезы о виде распределения СП.

3. Проверка верности выдвинутой гипотезы по критериям соответствия (согласия) эмпирических и аналитических вероятностных характеристик, а также определение класса и основных свойств случайной последовательности с оценкой показателей качества оценок и решений.

Рассмотрим основные этапы тестирования случайных последовательностей в предположении выполнения условий стационарности и эргодичности выборочных данных.