Смекни!
smekni.com

Моделирование систем массового обслуживания (стр. 3 из 4)

Конфликтные ситуации, встречающиеся в реальной жизни, обусловливаются многочисленными факторами и являются весьма сложными. Чтобы можно было их изучать, необходимо отвлечься от всего второстепенного и сосредоточить внимание на анализе главных факторов, иначе говоря, надо формализовать реальную ситуацию и построить ее модель. Такую модель называют игрой. От реальной конфликтной ситуации игра отличается тем, что она ведется по предварительно оговоренным правилам и условиям. Стороны, участвующие в игре, называются игроками. В игре могут участвовать двое, тогда она называется парной. Если же в ней сталкиваются интересы многих лиц, то игра называется кооперативной. Ее участники могут образовывать постоянные или временные коалиции. При наличии двух коалиций кооперативная игра превращается в парную.

Игра представляет собой мероприятие, состоящее из ряда действий двух игроков, определяемых правилами игры. Частная возможная реализация этих правил называется партией. Результат или исход игры, к которому приводит совокупность принятых решений в процессе игры, называется выигрышем. В большинстве игр сумма выигрыша одного игрока равна сумме проигрыша другого, поэтому в любой их партии имеет место равенство:

Число

может быть положительным, отрицательным и равным нулю. При
- выигрыш,
- проигрыш и
- ничейный исход. Выигрыш или проигрыш не всегда имеет количественное выражение, например, в шахматной игре. В этих случаях результат выражают условными числами: выигрыш (+1), проигрыш (-1), ничья (0). Если один игрок выигрывает то, что проигрывает другой, то алгебраическая сумма выигрышей будет равна нулю. В этом случае имеет место игра с нулевой суммой. Бывает еще игра двух лиц с постоянной суммой. Бывает еще игра двух лиц с постоянной суммой. В этой игре два партнера непримиримо конкурируют из-за возможно большей доли разыгрываемой суммы. Посредством соответствующего преобразования такая игра может быть превращена в игру с нулевой суммой.

Развитие игры во времени сводится к ряду последовательных действий или вариантов принятия решений. Выбор одного из предусмотренных правилами игры вариантов называется ходом. Ходы делятся на личные и случайные. Личным ходом называется сознательный выбор одним из игроков одного из возможных в данной ситуации ходов и его осуществление. Случайным ходом называется выбор из ряда возможностей, осуществляемых не игроком, а каким-либо механизмом случайного выбора. Игры могут состоять из личных, случайных и смешанных ходов.

Теория игр может быть полезным инструментом планирования и управления сельскохозяйственным производством, а также прогнозирования. В задачах с конфликтными ситуациями ведется поиск хозяйственных стратегий, с помощью которых достигается максимально возможный (оптимальный) результат.

В любой игре важное значение имеет стратегия, под которой принимается совокупность правил, определяющих выбор при каждом личном ходе игрока, в зависимости от ситуации, сложившейся в процессе игры. В матричных играх применяются чистые и смешанные стратегии. Стратегии с компонентом, равным единице, называются чистыми стратегиями. Стратегии с отличными от единицы компонентами, представляющими вероятные ее доли, называются смешанными.

Задачей теории игр является нахождение решения игры, т. е. определение для каждого игрока его оптимальной стратегии и цены игры. Оптимальной называется стратегия, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средний выигрыш (или минимально возможный средний проигрыш) независимо от поведения противника. Ценой игры называется выигрыш (проигрыш), соответствующий оптимальным стратегиям игроков.

При выборе стратегий можно базироваться на различных принципах. В теории игр наилучшим принято считать поведение игроков, при котором каждый игрок предполагает, что его противник не глупее (тка называемый принцип разумности). В результате этого рекомендуется в качестве наилучшей стратегии выбирать ту, которая обеспечивает наибольший гарантированный выигрыш, т. е. выигрыш, не зависящий от действий потивника и который противник никак не может уменьшить. Элементы риска, а также просчеты и ошибки игроков во внимание не принимаются.


2. Элементы практического применения теории массового обслуживания

Рассмотрим систему массового обслуживания на примере обслуживания рабочих необходимым инвентарем.

Допустим, что в инвентарной кладовой работают два человека. Требуется определить, в какой степени они своевременно обеспечивают заявки на обслуживание, поступающие от рабочих; не обходятся ли простои рабочих в очереди дороже, чем дополнительное содержание еще одного или двух работников кладовой?

Таблица 1. – Расчет полного числа прихода рабочих в кладовую

Число приходов в единицу времени (за 15 мин) Наблюдаемое число приходов, % Наблюдаемая частота приходов,% Полное число приходов рабочих (гр.1 * гр.2) Число приходов в единицу времени (за 15 мин) Наблюдаемоечисло приходов,% Наблюдаемая частота приходов,% Полное число приходов рабочих (гр.1 * гр.2)
01234567891011121314 001358101213161820192125 000,331,001,672,673,334,004,335,336,006,676,337,008,33 002920406084104144180220228273350 151617181920212223242526 2320181613111085311300 7,676,676,005,334,333,673,332,671,671,000,330,3399,99 345320306288247220210176115722526

Для решения данной задачи необходимы прежде всего хронометражные замеры о потоке требований на обслуживание в единицу времени. Если хронометраж осуществляется в течение 10 дней каждые 15 минут за смену (кроме начала и конца рабочего дня), то за этот период времени было произведено 300 наблюдений (30 наблюдений, умноженное на 10 дней). Время наблюдений (T) составит 4500 мин (15 ×300). Причем таких промежутков, когда на склад никто не приходил или приходил только один рабочий, не наблюдалось, приход двух рабочих отмечался один раз, трех – три раза и т. д. (табл. 1).

Частота прихода двух рабочих при 300 наблюдениях равна 0,33

, трех – 1
и т. д.

Для определения среднего числа приходов в единицу времени (

) исчисляется полное число приходов (N) как сумма произведений числа приходов (количества пришедших в кладовую рабочих) на наблюдаемое число приходов.

Таким образом, среднее число требований на обслуживание, т. е. среднее число приходов в единицу времени (

), составит:

=
=
=0,903 чел. – мин.

Чтобы определить распределение вероятностей для длительности обслуживания при предположении, что закон распределения экспоненциальный, вычислим среднюю продолжительность одного обслуживания (Тобсл); она равна 1,6 мин.

После этого можно установить интенсивность обслуживания (

):

=
;
=
=0,625 чел. – мин.

В случае, когда

<
, увеличение очереди не возникает, так как удовлетворение требований происходит не ранее их поступления. В данном примере
>
(0,903>0,625) и в кладовой образуется очередь.

Точно определить величину очереди как случайную нельзя. Можно вычислить вероятность того, что в момент времени (t) очередь будет характеризоваться числом требований Pn(t):

Pn(t)=

(1-
); P0(t) =(1-
);
=
,

где P0(t) – вероятность отсутствия очереди.

В тех случаях, когда

1, вероятность отсутствия очереди (
0) обычно берется из графиков (в данном примере
=1,445).