Смекни!
smekni.com

Расчет показателей эконометрики (стр. 5 из 6)

Таблица 4.4 Расчетная таблица

t y
2
2
2
1 1 3,2 3,080 2 -4,5 20,25 0,120 0,014 -5,5 30,25
2 2 3,1 3,233 3 -3,5 12,25 -0,133 0,018 -4,5 20,25
3 3 3,5 3,386 4 -2,5 6,25 0,114 0,013 -3,5 12,25
4 4 3,5 3,539 5 -1,5 2,25 -0,039 0,002 -2,5 6,25
5 5 3,7 3,692 6 -0,5 0,25 0,008 0,000 -1,5 2,25
6 6 4 3,845 7 0,5 0,25 0,155 0,024 -0,5 0,25
7 7 4,1 3,998 8 1,5 2,25 0,102 0,010 0,5 0,25
8 8 4 4,151 9 2,5 6,25 -0,151 0,023 1,5 2,25
9 9 4,1 4,304 10 3,5 12,25 -0,204 0,042 2,5 6,25
10 10 4,2 4,457 11 4,5 20,25 -0,257 0,066 3,5 12,25
11 11 4,3 4,610 12 5,5 30,25 -0,310 0,096 4,5 20,25
12 12 5,4 4,763 13 6,5 42,25 0,637 0,406 5,5 30,25
Σ 78 47,1 47,058 0,042 0,714 143
Сред 6,5

= 0,714 - остаточная сумма квадратов.

= 0,267 – среднее квадратическое отклонение остаточной суммы квадратов

= 0,313

Таким образом, прогнозируемый уровень номинальной заработной платы на январь следующего года составит

= 4,916 ± 2,2281*0,313 = 4,916 ± 0,697 тыс. руб.

Выполненный прогноз уровня номинальной заработной платы на январь следующего года оказался надежным (р = 1 -

= 0,95), и не точным, так как диапазон верхней и нижней границ доверительного интервала Dγ составляет 1,33 раза

Dγ = γ

mаx / γ
min = 5,613 / 4,219 = 1,33.

Задача 5

Динамика численности незанятых граждан и объема платных услуг населению в регионе характеризуется следующими данными

Месяц Число незанятых граждан тыс.чел .,x1 Объем платных услуг населению млрд.руб., y1
Январь 44,0 6,5
Февраль 45,5 7,0
Март 47,9 7,0
Апрель 48,3 7,4
Май 49,1 7,5
Июнь 49,9 7,2
Июль 50,5 7,5
Август 51,9 7,9
Сентябрь 52,3 8,2
Октябрь 52,3 8,5
Ноябрь 53,5 8,9
Декабрь 54,7 9,2

В результате аналитического выравнивания получены следующие уравнения трендов и коэффициент детерминации(t=1÷12):

А) для объема платных услуг населению

Ŷ1=6,3061+0,2196t,R2=0,9259

Б) для численности незанятых граждан

̂х1=43,724+0,8937t , R2=0,989

Задание

1. Дайте интерпретацию параметров уровней трендов.

2. Определите коэффициент корреляции между временными рядами, используя:

А) непосредственно исходные уровни

Б)о тклонения от основной тенденции

3). Сделайте вывод о тесноте связи между временными рядами.

4). Постройте вывод о тесноте связи между временными рядами. Дайте интерпретацию параметров уравнения.


Решение

Наиболее простую экономическую интерпретацию имеют параметры линейного тренда. Параметры линейного тренда можно интерпретировать так:

а – начальный уровень временного ряда в момент времени t = 0;

b – средний за период абсолютный прирост уровней ряда.

Для исходной задачи начальный уровень ряда для выпуска товаров соответствует значению 6,3061 млрд. руб., средний за период абсолютный прирост уровней ряда составляет 0,2196 млрд. руб. Параметр b > 0, значит уровни ряда равномерно возрастают на 0,2196 млрд. руб. каждый год.

Для числа незанятых граждан тыс,чел коэффициент а - начальный уровень ряда соответствует значению 43,724 тыс. чел.; абсолютное ускорение увеличения среднесписочной численности работников соответствует 0,8937.

Рассчитаем коэффициент корреляции между временными рядами, используя непосредственно исходные уровни. Коэффициент корреляции характеризует тесноту линейной связи между изучаемыми признаками. Определяем его по формуле

rxy=

Расчет параметров коэффициента корреляции

X Y x·y ŷ
1. 1 2 3 4 5 6 7
1. 44 6,5 1936 286 42,25 15,96 78,9
2. 45,5 7 2070,25 318,5 49 16,2979 80,1
3. 46,8 7 2190,24 327,6 49 16,82494 82,08
4. 47,9 7,4 2294,41 354,46 54,76 17,08846 82,34
5. 48,8 7,5 2381,44 48,8 56,25 17,2644 82,98
6. 49,1 7,2 2410,81 353,52 51,84 17,25 83,62
7. 49,9 7,5 2490,01 374,25 56,25 17,3959 84,1
8. 50,5 7,9 2550,25 50,5 62,41 17,70334 85,22
9. 51,9 8,2 2693,61 425,58 67,24 17,79118 85,54
10 52,3 8,5 2735,29 444,55 72,25 17,79118 85,85
11 53,5 8,9 2862,25 476,15 79,21 18,0547 86,3
12 54,7 9,2 2992,09 503,24 84,64 18,31822 87,46
594,9 92,8 29606,65 3963,15 725,1 207,7402 1011,49
ср.знач 49,575 7,733333 2467,221 330,2625 60,425 17,31169 83,7075

sх =

=
= 3,08;

sу =

=
=0,821.

rxy =

= -20,7110 - связь слабая, прямая.

При измерении корреляции между двумя временными рядами следует учитывать возможное существование ложной корреляции, что связано с наличием во временных рядах тенденции, т.е. зависимости обоих рядов от общего фактора времени. Для того чтобы устранить ложную корреляцию, следует коррелировать не сами уровни временных рядов, а их последовательные (первые или вторые) разности или отклонения от трендов (если последние не содержат тенденции).

Таким образом между временными рядами существует прямая слабая взаимосвязь.

Линейная регрессия сводится к нахождению уравнения вида

= a + b*x

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов.

Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b.

,

Можно воспользоваться готовыми формулами, которые вытекают из этой системы

а =

;

b =

=
= 0,008;

а = 0,00286 – 0,701*0 = 7,334

Уравнение регрессии по отклонениям от трендов:

= 7,334+ 0,008*х

Список используемой литературы

1. Практикум по эконометрике: Учеб. пособие / И. И. Елисеева, С. В. Курышева, Н. М. Гордеенко и др.; Под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2001. – 192 с.

2. Эконометрика: Учебник / Под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2001. – 344 с.

3. Мхитарян В.С., Архипова М.Ю. Эконометрика Московский международный институт эконометрики, информатики, финансов и права. - М., 2004. - 69 с.

4. Эконометрия - УП – Суслов – Ибрагимов – Талышева - Цыплаков - 2005 – 744 с.


Приложение №1

Таблица 1.2 Расчетная таблица

y x
(
)2
(
)2
(
)2
(
)2
1 35,8 9,4 5,240 27,458 41,559 10,999 120,978 -5,759 33,166 3,930 15,445
2 22,5 2,5 -8,060 64,964 22,248 -8,312 69,089 0,252 0,064 -2,970 8,821
3 28,3 3,9 -2,260 5,108 26,166 -4,394 19,307 2,134 4,554 -1,570 2,465
4 26,0 4,3 -4,560 20,794 27,285 -3,275 10,726 -1,285 1,651 -1,170 1,369
5 18,4 2,1 -12,160 147,866 21,128 -9,432 88,963 -2,728 7,442 -3,370 11,357
6 31,8 6,0 1,240 1,538 32,043 1,483 2,199 -0,243 0,059 0,530 0,281
7 30,5 6,3 -0,060 0,004 32,883 2,323 5,396 -2,383 5,679 0,830 0,689
8 29,5 5,2 -1,060 1,124 29,804 -0,756 0,572 -0,304 0,092 -0,270 0,073
9 41,5 6,8 10,940 119,684 34,282 3,722 13,853 7,218 52,100 1,330 1,769
10 41,3 8,2 10,740 115,348 38,201 7,641 58,385 3,099 9,604 2,730 7,453
Σ 305,6 54,7 0,000 503,884 305,600 -0,001 389,468 0 114,411 0 49,722
Сред. знач. 30,56 5,47 - - - - - - - - -

Приложение 2.