Смекни!
smekni.com

Моделирование хозяйственной деятельности предприятия (стр. 1 из 2)

Министерство образования и науки РФ

Хабаровская государственная академия экономики и права

Кафедра высшей математики

Факультет «Финансист»

Специальность: «Финансы и кредит»

Специализация: ГМФ

КОНТРОЛЬНАЯ РАБОТА

По дисциплине

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Вариант № 6

Выполнил: Алепов А.В.

студ. 3ФК курса,

г. Южно-Сахалинск 2006 г.

№6

Привести систему к системе с базисом, найти соответствующее базисное решение и сделать проверку, подставив решение в исходную систему:

Решение:

Составим таблицу:

2 7 3 1 6
1 -5 1 3 10
6 -1 -2 5 -2
1 -5 1 3 10
2 7 3 1 6
6 -1 -2 5 -2
1 -5 1 3 10
0 17 1 -5 -14
0 29 -8 -13 -62
1 1 -5 3 10
0 1 17 -5 -14
0 -8 29 -13 -62
1 0 -22 8 24
0 1 17 -5 -14
0 0 165 -53 -174
1 0 0
0 1 0
0 0 1

Получили систему с базисом:

Здесь

,
,
- базисные неизвестные,
- свободное неизвестное. Положим
. Получим
,
,
.

Подставим решение в исходную систему:

,

решение найдено верно.

№26

Предположим, что для производства двух видов продукции А и В можно использовать только материал трех сортов. При этом на изготовление единицы изделия А расходуется 2 кг материала, 3 кг материала второго сорта, 4 кг материла третьего сорта. На изготовление единицы изделия В расходуется 5 кг материала, 2 кг материала второго сорта, 3 кг материла третьего сорта. На складе фабрики имеется всего материала первого сорта 45 кг, второго сорта - 27 кг, третьего сорта – 38 кг. От реализации единицы готовой продукции вида А фабрика имеет прибыль 7 тыс. рублей, а от продукции вида В прибыль составляет 5 тыс. рублей.

Определить максимальную прибыль от реализации всей продукции видов А и В. Решить задачу симплексным методом и графически.

Решение:

1. Решение с помощью симплексного метода.

Составим математическую модель задачи. Обозначим через х1 и х2 выпуск продукции А и В соответственно. Затраты материала первого сорта на план

составят 2х1 + 5х2 и они недолжны превосходить запасов 45 кг:

Аналогично, ограничения по материалу второго сорта

И по материалу третьего сорта:

Прибыль от реализации х1 изделий А и х2 изделий В составит

целевая функция задачи.

Получили модель задачи:


Вводом балансовых переменных приводим модель к каноническому виду:

Запишем начальное опорное решение:

Симплекс-таблицу заполняем из коэффициентов при неизвестных из системы ограничений и функции:

Баз.перем. С План 7 5 0 0 0
х1 х2 х3 х4 х5
х3 0 45 2 5 1 0 0
х4 0 27 3 2 0 1 0
х5 0 38 4 3 0 0 1
∆Z 0 -7 -5 0 0 0
x3 0 27 0 11/3 1 -2/3 0
x1 7 9 1 2/3 0 1/3 0
х5 0 2 0 1/3 0 -4/3 1
∆Z 63 0 -1/3 0 7/3 0
x3 0 5 0 0 1 14 -11
x1 7 5 1 0 0 3 -2
x2 5 6 0 1 0 -4 3
∆Z 65 0 0 0 1 1

в индексной строке содержатся две отрицательные оценки , наибольшая по абсолютной величине (-7)

В индексной строке содержится отрицательная оценка (-1/3).

в индексной строке нет отрицательных оценок

Так как все оценки положительные записываем оптимальное решение:

При этом плане прибыль от реализации изделий х1 = 5 и х2 = 6 составит Zmax= 65; х4 = 0 и х5 = 0 означает, что материал второго и третьего сорта использован полностью, а х3 = 5 говорит о том, что осталось еще 5 кг материала первого сорта.

Получили Zmax= 65 тыс. руб. при

.

2. Графическое решение:

Рассмотрим систему линейных неравенств.

Строим область допустимых решений данной задачи. Для этого строим граничные линии в одной системе координат:

(I),

(II),

(III),

х1 = 0 (IV), х2 = 0 (V).

Для построения прямых берем по две точки:

Областью решений является пятиугольник ABCDO.

Затем строим на графике линию уровня

и вектор


или

Теперь перемещаем линию уровня в направлении вектора

. Последняя точка при выходе из данной области является точка С – в ней функция