Смекни!
smekni.com

Средняя относительная ошибка аппроксимации для нашего примера рассчитывается как среднеарифметическая относительных отклонений по каждому наблюдению:

2.3. Стандартная ошибка регрессии характеризует уровень необъясненной дисперсии и для однофакторной линейной регрессии (m=1) рассчитывается по формуле:

Стандартная ошибка параметра b1 уравнения регрессии находится по формуле:

Стандартная ошибка параметра b0 определяется:

На основе стандартных ошибок параметров регрессии проверим значимость каждого коэффициента регрессии путем расчета t-статистик и их сравнении с критическим значением при уровне значимости α=0,05 и числом степеней свободы (12-m-1)=10: tкр=

Поскольку tb1 = -6,396<2,228, не подтверждается статистическая значимость коэффициента регрессии b1.

Поскольку tb0 =12,75 >2,228, гипотеза о статистической незначимости коэффициента b0 отклоняется. Это значит, что в данном случае нельзя пренебречь свободным членом уравнения регрессии, рассматривая уравнение:

у=127,22-2,13*х

Коэффициент детерминации в нашем случае рассчитывается по формуле:

Поскольку R2=0,804<12,75, то можно заключить, что введенный в регрессию фактор – ставка налога- не объясняет поведение показателя – прибыль.

Для оценки автокорреляции остатков рассчитываем значение критерия Дарбина-Уотсона по формуле:

Поскольку значение d меньше 2, то это позволяет сделать предположение о положительной автокорреляции остатков.

Запись полученных характеристик уравнения в стандартной форме имеет вид:

У=127,22-2,13х; rху=-0,9; R2=0,804; DW=0,17; А=16,9%

Стандарт ошибка (0,333) (9,98)

t-стат. (-6,396) (12,75)

2.4. При прогнозировании снижения налогового давления до 33% прибыль предприятия составит:

у = 127,22-2,13*33 = 56,93 (тыс.руб.)


4. Задача №3

4.1. Определим переменные модели, ориентируясь на показатели, которые необходимо найти. В задаче требуется определить какое количество нефти из поступающих сортов необходимо переработать, чтобы получить необходимый ассортимент продуктов переработки и максимальную прибыль.

Поэтому введем переменные:

- количество нефти 1 - го сорта, которое идет на изготовление продуктов А, В, С, Д;

- количество нефти 2 - го сорта, которое идет на изготовление продуктов А, В, С, Д;

- количество нефти 3а сорта, которое идет на изготовление продуктов А, В, С, Д;

- количество нефти 3б сорта, которое идет на изготовление продуктов А, В, С, Д;

- количество нефти 4 - го сорта, которое идет на изготовление продуктов А, В, С, Д.

Построим систему ограничений на лимиты по выходу продуктов переработки (по видам) из 1 тонны сырой нефти.

4.2. Учитывая, что в течении недели потребность в продуктах нефтепереработки группы А не превышает 170 тыс. тонн, то ограничение по данному виду выглядит:

0,6

+0,5
+0,4
+0,4
+0,3
170 тыс. тонн

Ограничение по продуктам нефтепереработки группы В:

0,2

+0,2
+0,3
+0,1
+0,3
85 тыс. тонн

Ограничение по продуктам нефтепереработки группы С:

…+…+…+0,1

+…
20 тыс. тонн

Ограничение по продуктам нефтепереработки группы Д:

0,1

+0,2
+0,2
+0,2
+0,3
85 тыс. тонн

Построим ограничение по количество сырой нефти каждого вида, которая может поступить за неделю на завод:

По количеству нефти сорта А: По количеству нефти сорта В:

100
100

По количеству нефти сорта С: По количеству нефти сорта Д:

+
200
100

Учитывая, что рентабельность переработки сырой нефти составляет: 1-го сорта – 1 у.е./т., 2-го сорта - 2 у.е./т., 3 – го сорта – а). при получении жидкого топлива 1,5 у.е./т, б). при получении смазочного масла 2,5 у.е./т., 4-го сорта – 0,7 у.е./т., величина прибыли от переработки нефтепродуктов составит: 1

+2
+1,5
+2,5
+0,7

4.3. Требование максимизации этого функционала записывается в виде: 1

+2
+1,5
+2,5
+0,7
max

Таким образом, оптимальная модель для решения задачи имеет вид:

1

+2
+1,5
+2,5
+0,7
max

0,6

+0,5
+0,4
+0,4
+0,3
170 тыс. тонн

0,2

+0,2
+0,3
+0,1
+0,3
85 тыс. тонн

…+…+…+0,1

+…
20 тыс. тонн