Рассмотренное понятие является полезным при проведении анализа, синтеза или другого исследования.
Необходимость учета фактора времени при описании сложной системы, а также рассмотрения поведенческих аспектов в движении и развитии систем приводит к необходимости исследования динамической системы.
Определение 1.5. Динамической системой S называется сложное математическое понятие:
, (1.12)определяемое следующими аксиомами.
1. Заданы: множество моментов времени Т, макрофункция системы Ф, множество входных воздействий X, множество возмущений
, множество состояний U, множество значений выходных величин Y, структура системы G и отношение эмерджентности R.2. Множество Т есть некоторое упорядоченное подмножество множества вещественных чисел.
3. Макрофункция системы определяется с помощью двух функций:
и ,где S – функциональная модель объекта,
V – функция качества, или оценочная функция,
С – множество оценок.
Макрофункция системы определяется парой
.4. Множество возмущений
или множество неопределенностей представляет собой множество всевозможных воздействий, которые сказываются на поведении системы. Если такое множество не пусто: , функциональная модель объекта принимает вид , а оценочная функция – .5. Существует переходная функция состояния
,значениями которой служат состояния
,в которых оказывается система в момент времени
, если в начальный момент она находилась в состоянии и в течение отрезка на нее действовали входные воздействия .6. Задано выходное отображение
,определяющее выходные величины
.Пару
, где , называют событием системы S, а множество – пространством состояний системы.Конечный набор состояний системы, задаваемый переходной функцией
и определенный на некотором временном отрезке , , называется траекторией поведения системы на интервале .Говоря о движении системы, мы будем иметь в виду траекторию
поведения системы.
7. Структура системы G определяется в терминах теории графов:
, ; , где – вершины, – дуги графа.8. Отношение эмерджентности
.Данное понятие динамической системы позволяет выработать общую терминологию, уточнить концептуализацию и обеспечить единый подход в рассмотрении приложений, однако является недостаточно конкретным.
В рамках абстрактной теории систем последнее определение дополняется необходимыми доопределениями: конечномерности, линейности, стационарности и др. Однако теоретическое изложение этих вопросов в рамках данного учебника не производится: впредь по мере необходимости мы априорно будем задавать тип связей между исследуемыми величинами, или классами систем: линейная непрерывная система, конечный автомат и т.д. Задачи, рассматриваемые для динамической системы, традиционны: это вопросы устойчивости, идентификации, инвариантности, наблюдаемости, управляемости и оптимальности, реализуемости и др. Углубленное изучение теории вопроса позволяет грамотно и корректно ставить и решать задачи, связанные с управлением экономическими системами.
Концептуализация систем в области их классификации определяется исследователем в ходе оценки закономерностей функционирования и поведения объекта. Основные классы систем: дискретные и непрерывные системы, статические и динамические, дискретные и непрерывные, детерминированные и стохастические, линейные и нелинейные, открытые и замкнутые, управляемые и неуправляемые, – определяют выбор моделей, с помощью которых производится собственно исследование. Это не исключает возможности в частных исследованиях систем определенной природы сконцентрировать внимание на системах более узкого класса. В экономической кибернетике большое значение имеет исследование многоуровневых, или иерархических систем, а также адаптивных и самоорганизующихся систем.
Адаптивная система – система, которая может приспосабливаться к изменениям внутренних и внешних условий.
Если воздействия внешней среды изменяются непредвиденным образом, то изменение характеристик управляемого объекта также происходит непредвиденным путем. Примечательно то обстоятельство, что понятие адаптации в теории управления тождественно соответствующему понятию в биологии, означающему приспособление организма к новой для него или изменяющейся среде.
Разновидностями адаптивных систем являются самонастраивающиеся, самообучающиеся, самоорганизующиеся, экстремальные, а также системы автоматического обучения.
Одним из видов самонастраивающихся кибернетических систем является гомеостат. Первый гомеостат был создан английским ученым У.Р. Эшби. Гомеостат моделирует характерное свойство поведения живых организмов – гомеостазис, т.е. возможность поддержания некоторых величин, например, температуры тела, в физиологически допустимых границах путем реализации вероятностных процессов управления. В гомеостате управляемая переменная поддерживается на требуемом уровне механизмом саморегулирования. Примеров гомеостазиса в природе очень много. Например, это гомеостазис, управляющий численностью животных в природе: чем больше появляется зайцев, тем наблюдается большее количество рысей, которые поедают зайцев, ограничивая их рост, а следовательно, и рост численности самих рысей.
Если поведение системы рассматривать как цепь последовательных конечных изменений ее состояний, то переменные системы, изменяясь во времени, в каждый данный момент будут характеризоваться некоторыми значениями. Если одно определенное значение переменной u1 в момент времени t1 превращается в следующее значение u2 в момент t2, то считается что произошел переход из (u1,t1) в (u2,t2). Фактор, под действием которого происходит переход, называется оператором. Переменная, испытавшая воздействие оператора, называется операндом. Результат перехода – (u2,t2) называется образом. Если рассматривать некоторое множество всех переходов системы из состояния а в состояние в, состояния с в состояние d и т.д., то такое множество переходов для некоторого множества операндов называется преобразованием.
Преобразованиям можно дать математическое представление с помощью метода, предложенного У.Р. Эшби.
Речи некоторое множество состояний системы включает состояния a, b, c, d и на это множество операндов действует оператор Р, то поведение системы можно описать следующим образом:
.В первой строке записи перечислены состояния системы, или операнды. Во второй строчке, под каждым операндом, находятся образы в которые система переходит из состояний, записанных в верхней строке, под действием оператора Р. В этом преобразовании множество образов второй строки не содержит ни одного нового элемента Преобразование, которое не порождает новых элементов, называется замкнутым: