Смекни!
smekni.com

Экономическая кибернетика (стр. 4 из 31)

Рассмотренное понятие является полезным при проведении анализа, синтеза или другого исследования.

Необходимость учета фактора времени при описании сложной системы, а также рассмотрения поведенческих аспектов в движении и развитии систем приводит к необходимости исследования динамической системы.

Определение 1.5. Динамической системой S называется сложное математическое понятие:

, (1.12)

определяемое следующими аксиомами.

1. Заданы: множество моментов времени Т, макрофункция системы Ф, множество входных воздействий X, множество возмущений

, множество состояний U, множество значений выходных величин Y, структура системы G и отношение эмерджентности R.

2. Множество Т есть некоторое упорядоченное подмножество множества вещественных чисел.

3. Макрофункция системы определяется с помощью двух функций:

и
,

где S – функциональная модель объекта,

V – функция качества, или оценочная функция,

С – множество оценок.

Макрофункция системы определяется парой

.

4. Множество возмущений

или множество неопределенностей представляет собой множество всевозможных воздействий, которые сказываются на поведении системы. Если такое множество не пусто:
, функциональная модель объекта принимает вид
, а оценочная функция –
.

5. Существует переходная функция состояния

,

значениями которой служат состояния

,

в которых оказывается система в момент времени

, если в начальный момент
она находилась в состоянии
и в течение отрезка
на нее действовали входные воздействия
.

6. Задано выходное отображение

,

определяющее выходные величины

.

Пару

, где
,
называют событием системы S, а множество
пространством состояний системы.

Конечный набор состояний системы, задаваемый переходной функцией

и определенный на некотором временном отрезке
,
, называется траекторией поведения системы на интервале
.

Говоря о движении системы, мы будем иметь в виду траекторию

поведения системы.

7. Структура системы G определяется в терминах теории графов:

,
;
, где
– вершины,
– дуги графа.

8. Отношение эмерджентности

.

Данное понятие динамической системы позволяет выработать общую терминологию, уточнить концептуализацию и обеспечить единый подход в рассмотрении приложений, однако является недостаточно конкретным.

В рамках абстрактной теории систем последнее определение дополняется необходимыми доопределениями: конечномерности, линейности, стационарности и др. Однако теоретическое изложение этих вопросов в рамках данного учебника не производится: впредь по мере необходимости мы априорно будем задавать тип связей между исследуемыми величинами, или классами систем: линейная непрерывная система, конечный автомат и т.д. Задачи, рассматриваемые для динамической системы, традиционны: это вопросы устойчивости, идентификации, инвариантности, наблюдаемости, управляемости и оптимальности, реализуемости и др. Углубленное изучение теории вопроса позволяет грамотно и корректно ставить и решать задачи, связанные с управлением экономическими системами.

Классификация систем

Концептуализация систем в области их классификации определяется исследователем в ходе оценки закономерностей функционирования и поведения объекта. Основные классы систем: дискретные и непрерывные системы, статические и динамические, дискретные и непрерывные, детерминированные и стохастические, линейные и нелинейные, открытые и замкнутые, управляемые и неуправляемые, – определяют выбор моделей, с помощью которых производится собственно исследование. Это не исключает возможности в частных исследованиях систем определенной природы сконцентрировать внимание на системах более узкого класса. В экономической кибернетике большое значение имеет исследование многоуровневых, или иерархических систем, а также адаптивных и самоорганизующихся систем.

Адаптивная система – система, которая может приспосабливаться к изменениям внутренних и внешних условий.

Если воздействия внешней среды изменяются непредвиденным образом, то изменение характеристик управляемого объекта также происходит непредвиденным путем. Примечательно то обстоятельство, что понятие адаптации в теории управления тождественно соответствующему понятию в биологии, означающему приспособление организма к новой для него или изменяющейся среде.

Разновидностями адаптивных систем являются самонастраивающиеся, самообучающиеся, самоорганизующиеся, экстремальные, а также системы автоматического обучения.

Одним из видов самонастраивающихся кибернетических систем является гомеостат. Первый гомеостат был создан английским ученым У.Р. Эшби. Гомеостат моделирует характерное свойство поведения живых организмов – гомеостазис, т.е. возможность поддержания некоторых величин, например, температуры тела, в физиологически допустимых границах путем реализации вероятностных процессов управления. В гомеостате управляемая переменная поддерживается на требуемом уровне механизмом саморегулирования. Примеров гомеостазиса в природе очень много. Например, это гомеостазис, управляющий численностью животных в природе: чем больше появляется зайцев, тем наблюдается большее количество рысей, которые поедают зайцев, ограничивая их рост, а следовательно, и рост численности самих рысей.

Формализация поведения систем

Если поведение системы рассматривать как цепь последовательных конечных изменений ее состояний, то переменные системы, изменяясь во времени, в каждый данный момент будут характеризоваться некоторыми значениями. Если одно определенное значение переменной u1 в момент времени t1 превращается в следующее значение u2 в момент t2, то считается что произошел переход из (u,t1) в (u,t2). Фактор, под действием которого происходит переход, называется оператором. Переменная, испытавшая воздействие оператора, называется операндом. Результат перехода – (u,t2) называется образом. Если рассматривать некоторое множество всех переходов системы из состояния а в состояние в, состояния с в состояние d и т.д., то такое множество переходов для некоторого множества операндов называется преобразованием.

Преобразованиям можно дать математическое представление с помощью метода, предложенного У.Р. Эшби.

Речи некоторое множество состояний системы включает состояния a, b, c, d и на это множество операндов действует оператор Р, то поведение системы можно описать следующим образом:

.

В первой строке записи перечислены состояния системы, или операнды. Во второй строчке, под каждым операндом, находятся образы в которые система переходит из состояний, записанных в верхней строке, под действием оператора Р. В этом преобразовании множество образов второй строки не содержит ни одного нового элемента Преобразование, которое не порождает новых элементов, называется замкнутым: