Смекни!
smekni.com

Экономико–математические методы в управлении (стр. 1 из 2)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ ИММАНУИЛА КАНТА

кафедра экономики

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Экономико – математические методы в управлении»

вариант №30

КАЛИНИНГРАД

2008


Задание

Задание 1.2.

Смесь можно составить из n продуктов Сj (j=1,n). В каждом из продуктов содержится m компонентов. Минимально допустимый объем содержания i-го компонента в смеси выражается величиной bi (i=1,3). Содержание i-го компонента в единице j-го продукта выражается величиной аij. Цена единицы j-го продукта равна сj. Составить смесь, минимальную по стоимости, выбрав для решения данной задачи наиболее рациональный способ.

C1

C2

C3

bi

cj

9

6

7

a1j

7

5

8

70

a2j

8

2

3

40

a3j

9

6

7

50

Задание 2.2.

Найти графоаналитическим методом оптимальное решение задачи нелинейного программирования.

maxZ = 3.6x1 – 0.2x12 + 0.8x2 – 0.2x22

2x1 + x2 ≥ 10

x12 -10x1 + x2 ≤ 75

x2 ≥ 0

Задание 3.1.

После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:

1) требуется профилактический ремонт;

2) требуется замена отдельных деталей и узлов;

3) требуется капитальный ремонт.

В зависимости от ситуации руководство предприятия может принять следующие решения:

1) отремонтировать оборудование своими силами, что потребует затрат а;

2) вызвать специальную бригаду ремонтников, расходы в этом случае составят b;

3) заменить оборудование новым, реализовав устаревшее по остаточной стоимости.. Совокупные затраты на это мероприятие составят с.

Требуется найти оптимально решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:

а) на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний – q;

б) имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;

в) о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.

П1

П2

П3

a

13

9

15

b

20

12

11

c

18

10

14

q

0.3

0.45

0.25

λ = 0.7

Задание 1.2.

Смесь можно составить из n продуктов Сj (j=1,n). В каждом из продуктов содержится m компонентов. Минимально допустимый объем содержания i-го компонента в смеси выражается величиной bi (i=1,3). Содержание i-го компонента в единице j-го продукта выражается величиной аij. Цена единицы j-го продукта равна сj. Составить смесь, минимальную по стоимости, выбрав для решения данной задачи наиболее рациональный способ.

C1 C2 C3 bi
cj 9 6 7
a1j 7 5 8 70
a2j 8 2 3 40
a3j 9 6 7 50

Смесь, минимальная по стоимости:

7x1 + 5x2 + 8x3 ≥ 70

8x1 + 2x2 + 3x3 ≥ 40

9x1 + 6x2 + 7x3 ≥ 50

x1 ≥ 0; x2 ≥ 0; x3 ≥ 0

F = 9x1 + 6x2 + 7x3 → min

После транспонирования матрицы элементов aij, cсимметричная двойственная задача будет иметь вид:

S(y1,y2,y3) = 70y1 + 40y2 + 50y3 → max , при ограничениях:

7y1 + 8y2 + 9y3 ≥ 9

5y1 + 2y2 + 6y3 ≥ 6

8y1 + 3y2 + 7y3 ≥ 7

y1 ≥ 0; y2 ≥ 0; y3 ≥ 0

Для решения двойственной задачи линейного программирования симплекс – методом, приведём систему неравенств к виду системы уравнений:

7y1 + 8y2 + 9y3 + y4 ≥ 9

5y1 + 2y2 + 6y3 + y5 ≥ 6

8y1 + 3y2 + 7y3 + y6 ≥ 7

y1≥0;y2≥0;y3≥0;y1≥0;y2≥0;y3≥0

S(y1,y2,y3) = 70y1 + 40y2 + 50y3 → max

По правилу соответствия переменных, базисным переменным прямой задачи соответствуют свободные переменные двойственной задачи:

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

Первая симплексная таблица:

Базис Сб А0 y1 70 y2 40 y3 50 y4 0 y5 0 y6 0
y4 0 9 7 8 9 1 0 0
y5 0 6 5 2 6 0 1 0
y6 0 7 8 3 7 0 0 1
0 -70 -40 -50 0 0 0

Вторая симплексная таблица:

Базис Сб А0 y1 70 y2 40 y3 50 y4 0 y5 0 y6 0
y4 0 23/8 0 43/8 23/8 1 0 -7/8
y5 0 13/8 0 1/8 13/8 0 1 -5/8
y1 70 7/8 1 3/8 7/8 0 0 1/8
245/4 0 -55/4 45/4 0 0 35/4

Третья симплексная таблица:

Базис Сб А0 y1 70 y2 40 y3 50 y4 0 y5 0 y6 0
Y2 40 23/43 0 1 23/43 8/43 0 -7/43
y5 0 67/43 0 0 67/43 -1/43 1 -26/43
y1 70 29/43 1 0 29/43 -3/43 0 8/43
2950/43 0 0 800/43 110/43 0 280/43

В последней таблице в строке Δ нет отрицательных элементов. В соответствии с критерием оптимальности точка максимума Smax = 2950/43 достигнута при значениях: y1 = 29/43; y2 = 23/43; y3 = 0.

По теореме двойственности: Fmin = Smax = 2950/43.

На основании правила соответствия между переменными, оптимальное решение прямой задачи:

y4 x1 = 110/43 y5 x2 = 0 y6 x3 = 280/43

Ответ: В смесь минимальной стоимости 2950/43 целесообразно включить 110/43 единиц продукта C1, 280/43 единиц продукта C3, а продукт C2 не включать.

Задание 2.2.

Найти графоаналитическим методом оптимальное решение задачи нелинейного программирования.

maxZ = 3.6x1 – 0.2x12 + 0.8x2 – 0.2x22

2x1 + x2 ≥ 10

x12 -10x1 + x2 ≤ 75

x2 ≥ 0

В данной задаче имеется нелинейная целевая функция с нелинейной системой ограничений. Графическая схема позволит определить положение точки оптимума.

Сначала необходимо преобразовать формулу целевой функции так, чтобы получить её графическое отображение. Воспользуемся методом выделения полного квадрата двучлена относительно x1 и x2, разделив левую и правую части формулы на -0.2:

-5Z = x12 -18x1 + x22 – 4x2

Добавим к левой и правой частям уравнения числа, необходимые для выделения полных квадратов двучлена в правой части выражения: