Смекни!
smekni.com

Экономико–математические методы в управлении (стр. 2 из 2)

92 и 22 в сумме составляют 85:

85 – 5Z = (x1 – 9)2 + (x2 – 2)2

В результате получилась формула, позволяющая графически изобразить целевую функцию в виде линии уровня на плоскости X1OX2. Данные линии уровня представляют собой окружности с общим центром в точке O (9;2). Данная точка является точкой абсолютного экстремума целевой функции.

Для определения характера экстремума нужно провести анализ целевой функции на выпуклость/вогнутость. Для этого необходимо определить вторые частные производные и составить из них матрицу:


Zx1x1 Zx1x2 = -0.4 0

Zx2x1 Zx2x2 0 -0.4

Определим знаки главных миноров данной матрицы.

Главный минор первого порядка -0.4 < 0.

Главный минор второго порядка 0.16 > 0.

Т.к. знаки миноров чередуются, функция Z - строго вогнута. Экстремум вогнутых функций – max, следовательно в точке О у целевой функции находится абсолютный максимум.

Для построения области допустимых значений преобразуем второе неравенство системы ограничений:

x12 – 10x1 + x2 ≤ 75

x12 – 10x1 + 25 + x2 ≤ 100

(x1 – 5)2 + x2 ≤ 100

(x1 – 5)2 ≤ 100 – x2

Уравнение (x1 – 5)2 = 100 – x2 выразим через переменные x1* и x2*:

x1* = x1 – 5

x2* = 100 – x2

Уравнение примет вид: x1*2 = x2*.

В системе координат X1*O*X2* данное уравнение является каноническим уравнением параболы.



На рисунке область допустимых значений – ограниченная часть плоскости ABCD. Из полученного графика видно, что точка абсолютного максимума Z лежит внутри ОДР. Следовательно, целевая функция принимает максимальное значение в этой точке:

max Z = Z(O) = Z(9;2) = 17

Задание 3.1

После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:

1) требуется профилактический ремонт;

2) требуется замена отдельных деталей и узлов;

3) требуется капитальный ремонт.

В зависимости от ситуации руководство предприятия может принять следующие решения:

1) отремонтировать оборудование своими силами, что потребует затрат а;

2) вызвать специальную бригаду ремонтников, расходы в этом случае составят b;

3) заменить оборудование новым, реализовав устаревшее по остаточной стоимости.. Совокупные затраты на это мероприятие составят с.

Требуется найти оптимально решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:

а) на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний – q;

б) имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;

в) о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.

П1 П2 П3
a 13 9 15
b 20 12 11
c 18 10 14
q 0.3 0.45 0.25

λ = 0.7

Составим платёжную матрицу, в которой Пj – состояния оборудования, Аi – альтернативы принятия решений:

П1 П2 П3
А1 -13 -9 -15
А2 -20 -12 -11
А3 -18 -10 -14

Для принятия оптимального решения в случае а). воспользуемся критерием Байеса; в случае б). критерием Лапласа; в случае в). критериями Вальда, Сэвиджа, Гурвица.

а). на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний: q1 = 0.3; q2 = 0.45; q3 = 0.25

Критерий Байеса.

Для каждой альтернативы найдём средний выигрыш: `ai = ∑aij×qj

`a1 = -11.7 `a2 = -14.15 `a3 = -13.4

П1 П2 П3 `ai
А1 -13 -9 -15 -11.7
А2 -20 -12 -11 -14.15
А3 -18 -10 -14 -13.4
qj 0.3 0.45 0.25

Из средних выигрышей выбираем максимальный: max ai = `a1 = -11.7 – первая альтернатива оптимальна в случае известных вероятностей наступления событий при выборе решения по критерию Байеса.

б). имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;

Критерий Лапласа.

Для каждой альтернативы найдём средний выигрыш: `ai = 1/3∑aij

`a1 = -12.3 `a2 = -14.3 `a3 = -14

П1 П2 П3 `ai
А1 -13 -9 -15 -12.3
А2 -20 -12 -11 -14.3
А3 -18 -10 -14 -14

Из средних выигрышей выбираем максимальный: max ai = `a1 = -12.3 – первая альтернатива оптимальна в случае равной вероятности наступления событий при выборе решения по критерию Лапласа.

в). о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.

Критерий Вальда.

Для каждой альтернативы определим наихудший исход. di – минимальный элемент строки. Из наихудших исходов выбираем наилучший, т.е. максимальный di.

П1 П2 П3 di
А1 -13 -9 -15 -15
А2 -20 -12 -11 -20
А3 -18 -10 -14 -18

max di = d1 = -15 – первая альтернатива оптимальна по критерию Вальда.

Критерий Сэвиджа.

Для каждого столбца находим максимальный элемент βj.

П1

П2

П3

А1

-13

-9

-15

А2

-20

-12

-11

А3

-18

-10

-14

βj

-13

-9

-11

Построим матрицу рисков, элементы которой: rij = βj - aij

max ri
0 0 4 4
7 3 0 7
5 1 3 5

В матрице рисков в каждой строке найдём максимальный риск, и из них выберем минимальный: min r = r1 = 4 – первая альтернатива оптимальна по критерию Сэвиджа.

Критерий Гурвица.

Для каждой строки находим минимальный di и максимальный βj.

П1 П2 П3 di βj χi
А1 -13 -9 -15 -15 -9 -13.2
А2 -20 -12 -11 -20 -11 -17.3
А3 -18 -10 -14 -18 -10 -15.6

χi = λ × di + (1 – λ) × βj λ = 0.7

Максимальный из элементов последнего столбца: max χi = χ1 = -13.2 – первая альтернатива оптимальна по критерию Гурвица.