Смекни!
smekni.com

Экономико-математическое моделирование анализа ресурсов (стр. 1 из 3)

1. Некоторая фирма выпускает два набора удобрений для газонов: обычный и улучшенный. В обычный набор входит 3 кг азотных, 4 кг фосфорных и 1 кг калийных удобрений, а в улучшенный – 2 кг азотных, 6 кг фосфорных и 3 кг калийных удобрений. Известно, что для некоторого газона требуется по меньшей мере 10 кг азотных, 20 кг фосфорных и 7 кг калийных удобрений. Обычный набор стоит 3 ден. Ед., а улучшенный – 4 ден. Ед. какие и сколько наборов удобрений нужно купить, чтобы обеспечить эффективное питание почвы и минимизировать стоимость?

Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум, и почему?

Решение:

Условие задачи:

стоимость 3 4
Состав удобрения Количество удобрений Необходимый минимум
обычное улучшенное
Азотное 3 2 10
Фосфорное 4 6 20
Калийное 1 3 7

1 составим математическую модель:

Обозначим через xj количество кг удобрения

x1- количество кг обычного удобрения;

x2- количество кг улучшенного удобрения.

Цель – наименьшая стоимость удобрения,

F= 3x1+4x2 →min

Ограничения:

По азотным удобрениям 3х1+2х2≥10

По фосфорным удобрениям 4х1+6х2≥20

По калийным удобрениям 1х1+3х2≥7

По смыслу х1≥0 х2≥0

Решим графическим способом.

Первое ограничение (по азоту) имеет вид 3х1+2х2≥10 найдем пересечение с осями координат, т. е. 3х1+2х2=10 – l1

Х1 0 10/3
Х2 5 0

0<10, верно, выбираем полуплоскость по направлению к (.) О

Второе ограничение 4х1+6х2=20 – l2

Х1 0 5
Х2 10/3 0

0<20, верно, выбираем полуплоскость по направлению к (.) О

Третье ограничение х1+3х2=7- l3

Х1 0 7
Х2 7/3 0

0<7 верно, выбираем полуплоскость по направлению к (.) О

Для определения направления движения к оптиму построим вектор – градиента Їс (с12), координаты которого являются частными производными целевой функции, т. е. с (3;4).

Построим линию уровня l0, приравняем целевую функцию к 0

1+4х2=0

Х1 0 -4
Х2 0 0

Передвигая линию уровня l0 в направлении обратном направлению вектора – градиента, т. к задача на минимум, достигнем минимальную точку целевой функции. Найдем координаты этой точки, решая систему из двух уравнений прямых, дающих в пересечении точку минимума:

(.) А = l1∩l3

1+2х2=10, *3 «-»

1+6х2=20

1=10

х1=2

Подставим в первое уравнение 3*2+2х2=10,

2=10-6,

2=4,

х2=2.

Fmin=3*2+4*2=6+8=14 ден. ед.

График:

Ответ: чтобы обеспечить эффективное питание почвы при минимизированной стоимости, которая составила 14 ден ед, необходимо купить 2 набора обычного удобрения и 2 набора улучшенного. Если данную задачу решать на максимум, то задача не имеет решения, так как целевая функция не ограничена сверху, т. е Fmax=+∞

2. Для изготовления четырех видов продукции используют три вида сырья. Запасы сырья, нормы его расхода и цены реализации единицы каждого вида продукции приведены в таблице.

тип сырья норма расхода сырья на одно изделие запасы сырья
А Б В Г
1 2 1 3 2 200
2 1 2 4 8 160
3 2 4 1 170
цена изделия 5 7 3

Требуется:

1. Сформулировать прямую оптимизационную задачу на максимум выручки от реализации готовой продукции, получить оптимальный план выпуска продукции.

2. Сформулировать двойственную задачу и найти ее оптимальный план с помощью теории двойственности.

3. Пояснить нулевые значения переменных в оптимальном плане.

4. На основе свойств двойственных оценок и теорем двойственности:

- Проанализировать использования ресурсов в оптимальном плане исходной задачи;

- Определить, как изменяется выручка от реализации продукции и план ее выпуска при увеличении запасов сырья 1 и2 вида на 8 и 10 единиц соответственно и уменьшении на 5 единиц запасов сырья 3 вида;

- Оценить целесообразность включения в план изделия Д ценой 10 единиц, на изготовление которой расходуется по две единицы каждого вида сырья.


Решение:

Сформулируем экономико – математическую модель задачи.

Переменные:

х1- количество единиц продукции А,

х2- количество единиц продукции Б,

х3- количество единиц продукции В,

х4- количество единиц продукции Г.

Целевая функция: F=5х1+7х2+3х3+6х4 →max,

Цель максимизировать выручку от реализации готовой продукции

Ограничение:

По 1 типу ресурса: 2х12+3х3+2х4≤200,

По 2 типу ресурса: х1+2х2+4х3+8х4≤160,

По 3 типу ресурса: 2х1+4х234≤170,

По смыслу х1234 ≥0.

Решение задачи выполним с помощью надстройки Excel Поиск Решения. Выбираем результат поиска решения в форме отчета Устойчивости.

Полученное решение означает, что максимальную выручку 460 ден ед, можем получит при выпуски 80 ед продукции А и 10 ед продукции Г. При это ресурсы 2 и 3 типа будут использоваться полностью, а из 200 ед сырья 1 типа будет использоваться 180 ед сырья.

Сформулируем экономико–математическую модель двойственной задачи

Переменные:

у1- двойственная оценка ресурса 1 типа, или цена 1 ресурса,

у2- двойственная оценка ресурса 2 типа, или цена 2 ресурса,

у3- двойственная оценка ресурса 3 типа, или цена 3 ресурса.

Целевая функция двойственной задачи: необходимо найти такие «цены» у на ресурсы, чтобы общая стоимость используемых ресурсов была минимальной. G=b1*y1+b2*y2+…→min

G=200у1+160у2+170у3→min

Ограничения:

Вы исходной задачи четыре переменных, следовательно в двойственной задаче четыре ограничения.

a11*y1+a12*y2+…≥c1

a12*y1+a22*y2+…≥c2

по виду продукции А: 2у12+2у3≥5,

по виду продукции Б: у1+2у2+4у3≥7,

по виду продукции В: 3у1+4у23≥3,

по виду продукции Г: 2у1+8у23≥6

по смыслу у1; у2; у3≥0

Найдем оптимальный план двойственной задачи, используя теоремы двойственности:

По 2 теореме- yi*(∑aij*xj-bi)=0 и xj(∑aij*yi-cj)=0,

у1*(2х12+3х3+2х4-200)=0 → у1(2*80+0+3*0+2*10-200)=0 180<200, то у1=0

у2*1+2х2+4х3+8х4-160)=0 → у2(80+2*0+4*0+8*10-160)=0 ,

у3*(2х1+4х234-170)=0 → у3*(2*80+4*0+0+10-170)=0.

В нашей задачи х1=80>0 и х4=10>0, поэтому первое и четвертое ограничение двойственной задачи обращаются в равенство:

12+2у3=5,

2у1+8у23=6,

у1=0,

у2+2у3=5,

23=6,


Выразим через у2=5-2у3,

8*(5-2у3)+у3=6,

40-16у33=6

-15у3=-34,

у3=34/15,

у2=5-2*34/15=7/15,

у1=0; у2=7/15; у3=34/15

G=200*0+160*7/15+170*34/15=460

Проверим выполняемость первой теоремы двойственности:

Fmax=Gmin=460

В нашей задачи в план выпуска не вошла продукция Б и В, потому что затраты по ним превышают цену на 3 ден ед (10-7=3) и 1,133 ден ед (4,1333-3=1,133) соответственно.

Подставим в ограничения двойственной задачи оптимальные значения у:

2*0+7/15+2*34/15=5=5,

0+2*7/15+4*34/15=10≥7,

3*0+4*7/15+34/15=4,133≥3,

2*0+8*7/15+34/15=6=6.

Так как запас ресурсов 1, 2 типа сырья изменяться на 8 и 10 единицы (увеличиться) и 3 типа уменьшаться на 5 единиц. Из теоремы об оценках известно, что колебание величины bi приводит к увеличению или уменьшению F.

F=∆bi*yi

F=8*0+10*7/15+(-5)*34/15=-6,667, следовательно, увеличение запасов ресурсов 1 и 2 типа на 8 и 10 ед. и уменьшение 3 типа на 5 ед приведет к уменьшению значения целевой функции на -6,667 ден ед.

По условию задачи для изготовления изделия Д используется:

Сырье 1 типа а*1=2,

Сырье 2 типа а*2=2,

Сырье 3 типа а*3=2

Ожидаемая прибыль от данного изделия Д с*=10 ден ед.

Для оценки целесообразности продукта Д, рассчитаем чистый доход

е=с*-∑а*i*yi

е=10-(2*0+2*7/15+2*34/15)=4,533

следовательно, целесообразно включать в план изделие Д, т.к. е=4,533>0.