Смекни!
smekni.com

Экономико-математические методы и прикладные модели (стр. 1 из 5)

МОСКОВСКИЙ КИНОВИДЕОИНСТИТУТ (филиал)

САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА КИНО И ТЕЛЕВИДЕНИЯ

КУРСОВАЯ РАБОТА

«Экономико-математические методы и прикладные модели»

Выполнила студентка 3-го курса

(ускоренный)

Ющак Е.В.

Преподаватель Манцев А.П.

г. Москва, 2002

I. Введение.

Предметом изучения дисциплины являются количественные характеристики экономических процессов, протекающих в промышленном производстве, изучение их взаимосвязей на основе экономико-математических методов и моделей. Эти модели линейного и нелинейного программирования, модели исследования операций, модели массового обслуживания.

Важное место отводится экономико-математическим моделям в ценообразовании. Особое внимание уделяется методам и моделям прогнозирования конъюнктуры рынка и определения цен, моделям и методам анализа инвестиционных проектов, моделям в управлении финансами.

Немалое место отводится моделям оптимального отраслевого и регионального регулирования – экономико-математическим моделям проекта развития отдельных отраслей промышленности. Это такие важные модели, как вариантная, транспортно-производственная, модель расчета топливного баланса региона.

Основным понятием является понятие математической модели. В общем случае слово модель – это отражение реального объекта. Такое отражение объекта может быть представлено схемой, эскизом, фотографией, моделью описательного характера в виде графиков и таблиц и т.д. Математическая модель – это система математических уравнений, неравенств, формул и различных математических выражений, описывающих реальный объект, составляющие его характеристики и взаимосвязи между ними. Процесс построения математической модели называют математическим моделированием. Моделирование и построение математической модели экономического объекта позволяют свести экономический анализ производственных процессов к математическому анализу и принятию эффективных решений.

Поскольку нами изучаются экономические задачи, то и строятся экономико-математические модели, включающие:

1) выбор некоторого числа переменных величин для формализации модели объекта;

2) информационную базу данных объекта;

3) выражение взаимосвязей, характеризующих объект, в виде уравнений и неравенств;

4) выбор критерия эффективности и выражение его в виде математического соотношения – целевой функции.

Итак, для принятия эффективных решений в планировании и управлении производством необходимо экономическую сущность исследуемого экономического объекта формализовать экономико-математической моделью, т.е. экономическую задачу представить математически в виде уравнений, неравенств и целевой функции на экстремум (максимум или минимум) при выполнении всех условий на ограничения и переменные.

II. Основные понятия моделирования.

2.1. Общие понятия и определение модели.

Содержанием любой экономико-математической модели является выраженная в формально-математических соотношениях экономическая сущность условий задачи и поставленной цели. В модели экономическая величина представляется математическим соотношением, но не всегда математическое соотношение является экономическим. Описание экономических условий математическими соотношениями – результат того, что модель устанавливает связи и зависимости между экономическими параметрами или величинами.

По содержанию различают экономико-математические и экономико-статистические модели. Различие между ними состоит в характере функциональных зависимостей, связывающих их величины. Так, экономико-статистические модели связаны с показателями, сгруппированными различными способами. Статистические модели устанавливают зависимость между показателями и определяющими их факторами в виде линейной и нелинейной функции. Экономико-математические модели включают в себя систему ограничений, целевую функцию.

Система ограничений состоит из отдельных математических уравнений или неравенств, называемых балансовыми уравнениями или неравенствами.

Целевая функция связывает между собой различные величины модели. Как правило, в качестве цели выбирается экономический показатель (прибыль, рентабельность, себестоимость, валовая продукция и т.д.). Поэтому целевую функцию иногда называют экономической, критериальной. Целевая функция – функция многих переменных величин и может иметь свободный член.

Критерии оптимальности – экономический показатель, выражающийся при помощи целевой функции через другие экономические показатели. Одному и тому же критерию оптимальности могут соответствовать несколько разных, но эквивалентных целевых функций. Модели с одной и той же системой ограничений могут иметь различные критерии оптимальности и различные целевые функции.

Решением экономико-математической модели, или допустимым планом называется набор значений неизвестных, который удовлетворяет ее системе ограничений. Модель имеет множество решений, или множество допустимых планов, и среди них нужно найти единственное, удовлетворяющее системе ограничений и целевой функции. Допустимый план, удовлетворяющий целевой функции, называется оптимальным. Среди допустимых планов, удовлетворяющих целевой функции, как правило, имеется единственный план, для которого целевая функция и критерий оптимальности имеют максимальное или минимальное значение. Если модель задачи имеет множество оптимальных планов, то для каждого из них значение целевой функции одинаково.

Если экономико-математическая модель задачи линейна, то оптимальный план достигается в крайней точке области изменения переменных величин системы ограничений. В случае нелинейной модели оптимальных планов и оптимальных значений целевой функции может быть несколько. Поэтому необходимо определять экстремальные планы и экстремальные значения целевой функции. План, для которого целевая функция модели имеет экстремальное значение, называют экстремальным планом, или экстремальным решением.

Для нелинейных моделей иногда существуют экстремальные значения целевой функции, а для линейных моделей экстремальных планов и экстремальных значений целевой функции быть не может.

Таким образом, для принятия оптимального решения любой экономической задачи необходимо построить ее экономико-математическую модель, по структуре включающую в себе систему ограничений, целевую функцию, критерий оптимальности и решение.

Методика построения экономико-математической модели состоит в том, чтобы экономическую сущность задачи представить математически, используя различные символы, переменные и постоянные величины, индексы и другие обозначения.

Все условия задачи необходимо записать в виде уравнений или неравенств. Поэтому, в первую очередь необходимо определить систему переменных величин, которые могут для конкретной задачи обозначить искомый объем производства продукции на предприятии, количество перевозимого груза поставщиками конкретным потребителям.

2.2. Постановка задач оптимизации

В общем виде задача оптимизации, или задача определения экстремума, ставится следующим образом.

Пусть заданы:

функция f(X), определенная на множестве O Í RN ;

множество D Í RN.

Найти точку Y = (y1, y2,..., yN) Î D, в которой функция f (X) достигает экстремального (минимального или максимального) значения, т.е.

f(X) = extr f(X) и Y Î D.

Функция f(X) называется целевой функцией, переменные X – управляемыми переменными, D – допустимым множеством и любой набор значений Y управляемых переменных, принадлежащий D (Y Î D), - допустимым решением задачи оптимизации.

Понятно, что искомая точка Y, в которой f(X) достигает своего экстремума, должна принадлежать пересечению области определения O функции f(X) и допустимого множества D (YÎ O Ç D). Если множества O и D совпадают со всем пространством RN (O = D = RN), то такая задача называется задачей на безусловный экстремум. Если хотя бы одно из множеств O или D является собственным подмножеством пространства RN (O Ì RN , D Ì RN) или множества O и D пересекаются (O Ç D ¹ Æ), то такая задача называется задачей на условный экстремум, в противном случае (O Ç D = Æ) точка экстремума Y не существует. Подчеркнем один частный случай: если множества O и D пересекаются в одной точке Y, то эта точка Y является единственным допустимым решением.

Обычно в задаче условного экстремума задается не само допустимое множество решений D, а система соотношений, его определяющая,

yj (x1, х 2, х N) £ (=, ³) 0, j = 1, 2, … М,

т.е.

D = {X: yj (X) £ (=, ³) 0, j = 1, 2, ... , M} Í RN,

или множество D может одновременно задаваться как в явном виде, т.е. допустимое решение Х должно принадлежать некоторой области P Ì RN, так и системой ограничений.

III. Методы линейного программирования.

3.1. Общая и типовая задача в линейном программировании.

Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

В самом общем виде задача математически записывается так:

U = f(X) ® max; X Î W,

Где X = (Х1, Х2,…, Хn);

W – область допустимых значений переменных Х1, Х2,…, Хn;

f(X) – целевая функция.

Для того, чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать X() Î W такое, что f(X()) ³ f(X), при любом X Î W, или для случая минимизации - что f(X()) ≤ f(X), при любом X Î W.

Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешима, если целевая функция f(X) не ограничена сверху на допустимом множестве W.