Смекни!
smekni.com

Эконометрический метод и использование стохастических зависимостей в эконометрике (стр. 2 из 3)

Остановимся кратко на роли методов статистического исследования зависимостей в разработке каждого из следующих направлений.

I. Нормирование

Общая схема формирования нормативов с использованием методов статистического исследования зависимостей может быть представлена следующим образом. Нормативный показатель играет в моделях типа

η = f (x) + ε (2.1)

роль результирующей (объясняемой) переменной у, а факторы, участвующие в расчете нормативного показателя, - роль объясняющих переменных x(1), x(2), . . . , x(p). Предполагается, что привлечение для расчета норматива у полной системы определяющих его факторов, т.е. такой системы, с помощью которой возможно детерминированное (однозначное) определение величины у, либо принципиально невозможно, либо нецелесообразно из-за чрезмерного усложнения расчетных формул. Поэтому анализируется связь между у и (x(1), x(2), . . . , x(p)) вида

y = f x(1), x(2), . . . , x(p); θ) + ε, (2.2)

где ε – остаточная компонента, обуславливающая возможную погрешность в определении норматива y по известным значениям факторов X = (x(1), x(2), . . . , x(p))T, а f (X; θ) – функция их некоторого известного параметрического семейства F = { f (X; θ)}, θ € A, однако численное значение входящего в ее уравнение параметра θ неизвестно. Для подбора «подходящего» значения θ проводится контрольный эксперимент (наблюдение), в результате которого исследователь получает исходные статистические данные.

Далее на основании этих данных проводится необходимый статистический анализ модели 2.2 с целью получения оценки θ неизвестного параметра θ и анализа точности полученной расчетной формулы Ycp (X) = f (X; θ), в которой величина условной (экспериментальной) средней Ycp (X) интерпретируется как средний нормативный показатель при значениях определяющих факторов, равных Х.

Данный подход использовался, в частности, при разработке методик численности служащих (по различным их функциям) на промышленном предприятии.

II. Прогноз, планирование, диагностика.

Определим в качестве результирующей переменной у интересующий нас прогнозируемый (планируемый, диагностируемый) показатель, а в качестве объясняющих переменных x(1), x(2), . . . , x(p) — сопутствующие факторы, значения которых содержат основную информацию о величине этого показателя. Наличие остаточной случайной компоненты ε, как и прежде, отражает тот факт, что переменные x(1), x(2), . . . , x(p) содержат не всю информацию об у, и обусловливает неизбежность погрешности в определении прогнозируемого (планируемого, диагностируемого) показателя по известным значениям объясняющих факторов x(1), x(2), . . . , x(p). Исходные статистические данные вида (2.2) исследователь получает, регистрируя одновременно значения у и (x(1), x(2), . . . , x(p)) на анализируемых объектах в прошлом (в базовом периоде) или на других объектах, но однородных с анализируемыми.

III. Оценка труднодоступных для непосредственного наблюдения и измерения параметров системы.

Восстановление возраста археологической находки по ряду косвенных признаков; прочности бетона с помощью косвенных (неразрушающих) методов контроля; денежных сбережений семьи по ее доходу (в среднедушевом исчислении) — во всех этих ситуациях исследователь вынужден иметь дело с показателями, труднодоступными для непосредственного измерения. Очевидно, для того чтобы иметь принципиальную возможность статистически выявить связь, существующую между труднодоступным показателей у и косвенно связанными с ним, но легко поддающимися наблюдению и измерению признаками x(1), x(2), . . . , x(p), исследователю необходимо располагать исходными статистическими данными, которые получают с помощью специально организованного контрольного эксперимента или наблюдения. После того как эта связь выявлена (и оценена степень ее точности), она используется для косвенного определения значений труднодоступных показателей лишь по значениям объясняющих переменных x(1), x(2), . . . , x(p).

IV. Оценка эффективности функционировании (или качества) анализируемой системы.

Пытаясь оценить (в целом) эффективность деятельности отдельного специалиста, подразделения или предприятия, проранжировать страны по некоторому интегральному качеству, мы каждый раз по существу решаем одну и ту же задачу: отправляясь в своем анализе от набора частных показателей x(1), x(2), . . . , x(p), каждый из которых может быть измерен и характеризует какую-нибудь одну частную сторону понятия «эффективность», мы их как бы взвешиваем и выходим на некоторый скалярный агрегированный показатель эффективности у. Этот показатель — латентный (скрытый), так как он принципиально не поддается непосредственному измерению. Но он с некоторой точностью восстанавливается по значениям частных показателей эффективности x(1), x(2), . . . , x(p). Это значит, что между латентным агрегированный показателем у и набором частных критериев эффективности x(1), x(2), . . . , x(p) существует статистическая связь типа (2.2).

V. Оптимальное регулирование параметров функционирования анализируемой системы, ситуационный анализ.

Рассмотрим пример. При анализе производительности мартеновских печей на одном из заводов исследовалась, в частности, зависимость между производительностью в тонно/часах и процентным содержанием углерода в металле по расплавлении ванны (пробу брали через час после первого скачивания шлака). Очевидно, величины производительности (yi) и процентного содержания углерода (xi) подвержены некоторому неконтролируемому разбросу, обусловленному влиянием множества не поддающихся строгому учету и контролю факторов.

Другими словами, последовательность пар чисел (xi, yi), i = 1, 2, . . . , 130, представляет в данном случае результаты 130 независимых наблюдений двумерной случайной величины (ξ, η). Здесь просматривается вполне определенная закономерность зависимости условного среднего значения производительности ycp (x) = E (η | ξ = x) от величины процентного содержания углерода х. Поэтому, мы можем дать рекомендации технологу по оптимальному (с точки зрения максимизации производительности) управлению процессом выплавки: поддерживать процентное содержание углерода в пределах 0,6-1,0 %.

Основные типы зависимостей между количественными переменными:

Зависимость между неслучайными переменными. В этом случае результирующий показатель у детерминировано (однозначно) восстанавливается по значениям неслучайных объясняющих переменных Х = (x(1), x(2), . . . , x(p))Т, т. е. значения у зависят только от соответствующих значений Х и полностью ими определяются. Это – обычная схема чисто функциональной зависимости между неслучайными переменными, когда у является некоторой функцией от р переменных Х (т. е. y = f (X)), что является вырожденным случаем зависимостей вида 2.2, когда остаточная случайная компонента ε равна нулю (с вероятностью единица).

Регрессионная зависимость случайного результирующего показателя η от неслучайных объясняющих переменных Х. Природа такой связи может носить двойственный характер:

а) регистрация результирующего показателя η неизбежно связана с некоторыми ошибками измерения ε, в то время как предикторные (объясняющие) переменные Х = (x(1), x(2), . . . , x(p))Т измеряются без ошибок

б) значения результирующего показателя η зависят не только от соответствующих значений Х, но и еще от ряда неконтролируемых факторов, поэтому при каждом фиксированном значении Х’ соответствующие значения результирующего показателя η (Х’) = (η | X = X’) неизбежно подвержены некоторому случайному разбросу.

В этом случае объясняющие переменные Х играют роль неслучайного (векторного при р > 1) параметра, от которого зависит закон распределения вероятностей (в частности, среднее значение и дисперсия) исследуемого результирующего показателя η. Удобной математической моделью такого рода является разложение вида

η (Х) = f (X) + ε (X). (2.4)

Корреляционно-регрессионная зависимость между случайными векторами η – результирующим показателем и ξ – объясняющей переменной. Зависимости такого типа вообще характерны для описания хода технологических процессов, реальные значения параметров которых ξ = (ξ(1), ξ(2), . . . , ξ(р))Т, равно как и характеризующие их результирующие показатели η = (η(1), η2), . . . , η(m))Т, как правило, флюктуируют случайным (но взаимосвязанным) образом около установленных номиналов.