в которой зависимой переменной служит
, а регрессором выступает – ( ), поэтому МНК – оценки параметров этой модели имеют вид:Подставив в последние формулы значения временных рядов
, получим:Подставляя эти значения в формулы:
. .Таким образом, применение двухшагового МНК ко второму уравнению структурной формы позволило идентифицировать второе уравнение первоначальной формы:
.Найдем оценки дисперсий случайных составляющих
, .Для этого решим систему уравнений, подставив в левую часть квадрат стандартной ошибки для регрессий потребления по государственным расходам, а также чистых инвестиций по государственным расходам:
Таким образом, по итогам двухшагового МНК эконометрическая модель имеет вид:
Для прогноза эндогенных переменных на
шагов вперед (в нашем случае на два шага) необходимо задать значения предопределенных переменных Предопределенная переменная в нашей работе (в нашем случае экзогенная) – (государственные расходы в год ). Поскольку у нас нет данных о будущих государственных расходах, то получим их путем прогноза по линейному тренду: .Оценки параметров линейного тренда получаем как МНК-оценки параметров парной регрессии:
Используя пакет прикладных программ Excel, получим оценки коэффициентов линейного тренда:
Регрессионная статистика | ||||||||
Множественный R | 0,98 | |||||||
R‑квадрат | 0,96 | |||||||
Нормированный R‑квадрат | 0,96 | |||||||
Стандартная ошибка | 10,18 | |||||||
Наблюдения | 38 | |||||||
Дисперсионный анализ | ||||||||
df | SS | MS | F | Значимость F | ||||
Регрессия | 1 | 96 938,13 | 96 938,13 | 936,08 | 2,309E‑27 | |||
Остаток | 36 | 3 728,08 | 103,56 | |||||
Итого | 37 | 100 666,21 | ||||||
Коэффициенты | Стандартная ошибка | t‑статистика | P‑Значение | Нижние 95% | Верхние 95% | Нижние 95,0% | Верхние 95,0% | |
Y‑пересечение | 185,18 | 3,37 | 54,98 | 2,48681E‑36 | 178,35 | 192,01 | 178,35 | 192,01 |
Period | 4,61 | 0,15 | 30,60 | 2,30864E‑27 | 4,30 | 4,91 | 4,30 | 4,91 |
Осуществляем прогноз эндогенных переменных:
. . .Находим прогноз будущих значений государственных расходов на 2008 г. и 2009 г. (
и ). Прогнозные значения приведены в Приложении.Подставив эти значения в формулы для выровненных значений эндогенных переменных, получим:
Прогноз на 2008 г.
Прогноз на 2009 г.
Приложение 1
Исходные данные
Period | Y | C | I | G |
1970 | 845,9 | 476,6 | 204,8 | 164,5 |
1971 | 872,4 | 502,6 | 194,8 | 174,9 |
1972 | 909,9 | 529,6 | 196,7 | 183,5 |
1973 | 953,3 | 544,4 | 214,2 | 194,7 |
1974 | 961,8 | 542,8 | 213,7 | 205,3 |
1975 | 953,5 | 563,0 | 176,0 | 214,5 |
1976 | 1 000,7 | 587,2 | 194,4 | 219,1 |
1977 | 1 034,2 | 612,4 | 198,0 | 223,8 |
1978 | 1 065,3 | 634,3 | 198,0 | 233,1 |
1979 | 1 109,5 | 654,8 | 212,4 | 242,3 |
1980 | 1 125,1 | 664,5 | 210,0 | 250,6 |
1981 | 1 131,1 | 661,6 | 207,6 | 261,9 |
1982 | 1 126,6 | 654,8 | 212,6 | 259,2 |
1983 | 1 144,3 | 664,4 | 221,8 | 258,1 |
1984 | 1 176,6 | 677,5 | 237,9 | 261,3 |
1985 | 1 204,0 | 690,2 | 250,3 | 263,5 |
1986 | 1 231,6 | 717,0 | 247,2 | 267,4 |
1987 | 1 248,8 | 742,8 | 237,0 | 269,1 |
1988 | 1 295,1 | 762,5 | 259,5 | 273,1 |
1989 | 1 345,6 | 785,8 | 292,5 | 267,3 |
1990 | 1 416,3 | 819,0 | 324,6 | 272,7 |
1991 | 1 488,7 | 854,7 | 352,2 | 281,8 |
1992 | 1 521,8 | 883,0 | 342,1 | 296,8 |
1993 | 1 509,6 | 890,0 | 322,5 | 297,1 |
1994 | 1 549,7 | 907,7 | 336,8 | 305,2 |
1995 | 1 579,0 | 927,4 | 340,7 | 310,9 |
1996 | 1 594,7 | 939,7 | 337,7 | 317,3 |
1997 | 1 623,5 | 947,5 | 357,0 | 318,9 |
1998 | 1 656,4 | 961,4 | 370,4 | 324,6 |
1999 | 1 689,8 | 990,0 | 371,4 | 328,4 |
2000 | 1 744,0 | 1 013,5 | 397,7 | 332,9 |
2001 | 1 765,6 | 1 032,4 | 398,6 | 334,6 |
2002 | 1 765,6 | 1 024,3 | 401,7 | 339,5 |
2003 | 1 761,8 | 1 025,7 | 395,2 | 340,9 |
2004 | 1 780,4 | 1 027,7 | 416,9 | 335,9 |
2005 | 1 794,4 | 1 027,0 | 430,0 | 337,4 |
2006 | 1 845,8 | 1 036,9 | 468,7 | 340,3 |
2007 | 1 891,7 | 1 032,0 | 512,3 | 347,4 |
Приложение 2
Выровненные значения Ĉ и Î
Period | G | Ĉ | Î |
1970 | 164,5 | 407,3 | 121,4 |
1971 | 174,9 | 443,5 | 137,9 |
1972 | 183,5 | 473,2 | 151,5 |
1973 | 194,7 | 511,9 | 169,2 |
1974 | 205,3 | 548,6 | 186,0 |
1975 | 214,5 | 580,4 | 200,5 |
1976 | 219,1 | 596,3 | 207,8 |
1977 | 223,8 | 612,5 | 215,2 |
1978 | 233,1 | 644,6 | 229,9 |
1979 | 242,3 | 676,5 | 244,5 |
1980 | 250,6 | 705,4 | 257,7 |
1981 | 261,9 | 744,5 | 275,5 |
1982 | 259,2 | 735,1 | 271,2 |
1983 | 258,1 | 731,3 | 269,5 |
1984 | 261,3 | 742,2 | 274,5 |
1985 | 263,5 | 749,9 | 278,0 |
1986 | 267,4 | 763,3 | 284,1 |
1987 | 269,1 | 769,4 | 286,9 |
1988 | 273,1 | 783,1 | 293,2 |
1989 | 267,3 | 763,2 | 284,1 |
1990 | 272,7 | 781,9 | 292,6 |
1991 | 281,8 | 813,1 | 306,9 |
1992 | 296,8 | 865,1 | 330,7 |
1993 | 297,1 | 866,1 | 331,2 |
1994 | 305,2 | 894,2 | 344,0 |
1995 | 310,9 | 913,8 | 353,0 |
1996 | 317,3 | 936,3 | 363,2 |
1997 | 318,9 | 941,7 | 365,7 |
1998 | 324,6 | 961,5 | 374,7 |
1999 | 328,4 | 974,5 | 380,7 |
2000 | 332,9 | 990,0 | 387,8 |
2001 | 334,6 | 996,0 | 390,5 |
2002 | 339,5 | 1 013,1 | 398,3 |
2003 | 340,9 | 1 017,6 | 400,4 |
2004 | 335,9 | 1 000,3 | 392,5 |
2005 | 337,4 | 1 005,6 | 394,9 |
2006 | 340,3 | 1 015,6 | 399,5 |
2007 | 347,4 | 1 040,2 | 410,7 |