При k = 1 соотношение (4.7) примет вид
или
Тогда с учетом (4.4) и (4.9) функция состояния
причем если не видно никаких ограничений на объем складских помещений и производственную мощность предприятия, то
Это связано с тем обстоятельством, что если иметь на конец 1-го этапа запас изделий в качестве
Получим рекуррентное соотношение динамического программирования в модели управления запасами при любом k = 2, …,n.
Запишем функцию состояния (4.5) в виде
Здесь, как уже было сказано выше, все переменные связаны балансовыми уравнениями
В связи с тем что величина запаса yk-1 к концу (k – 1)-го планового этапа с учетом (4.7) равна
Если внешних ограничений на уровни хранения и объемы производства не существует, то по аналогии с (4.11) получаем внутренние ограничения модели
Если складские емкости и производственные мощности предприятия ограничены количеством изделий Mk и Nk соответственно, то аналогично соотношениям (4.12) имеем
На самом деле ограничения (4.16) и (4.17) имеют более сложную структуру. Однако для решения практических задач этого вполне достаточно. Напомним лишь о том, что переменные xk и yk целочисленны и не отрицательны.
Рассмотрим теперь функцию затрат
gt – затраты на производство и доставку заказа на t-м этапе;
ct(xt) – затраты на производство xt единиц продукции на t-м этапе;
ht(yt) – затраты на хранение yt единиц продукции в течение t-го планового этапа.
Для определенности будем считать, что производственные затраты линейны, т.е. ct(xt) = ctxt, и что затраты на хранение пропорциональны объему хранимой продукции в течении месяца. Далее, уровень (объем) хранения в течение этого месяца определяется уровнем хранения на конец этапа. Иными словами, поскольку время изготовления партий изделий пренебрежимо мало, а производить и отправлять заказчикам продукцию предприятию выгодно вначале каждого месяца, то уровень хранимого имущества в течение t-го этапа определяется соотношением баланса
Функция затрат с учетом выведенных обозначений примет вид
Применим теперь метод динамического программирования к решению задачи управления запасами.
o Пример 6. Определение оптимальной программы производства
Рассмотрим плановый период работы предприятия, состоящий из трех месяцев: января, февраля, марта. Исходные данные сведены в таблице 1.
Таблица 1
Этап | k | 1 | 2 | 3 |
Месяц | Январь | Февраль | Март | |
Спрос | dk | 2 | 5 | 2 |
Затраты на оформление заказа | gk | 10 | 5 | 10 |
Затраты на производство одного изделия | ck | 3 | 5 | 3 |
Стоимость хранения одного изделия в течение месяца | hk | 2 | 2 | 1 |
Функция затрат определена формулой (4.18). Кроме того, будем считать, что предприятие не может производить более четырех изделий, а хранить – более трех, т.е. Mk = 3, Nk = 4, а уровень запасов y0 = y3 = 0.
Необходимо составить оптимальную программу выпуска продукции
Рассмотрим январский этап (k=1). Поскольку плановый период состоит из одного месяца, у нас практически нет возможности влиять на объем производства изделий. Поэтому все допустимые программы выпуска продукции будут оптимальны, поскольку они единственны.
Функция состояния в соответствии с (4.10) примет вид
Прежде чем произвести расчеты
Результаты вычислений сведем в табл. 2.
Таблица 2
| | |
0 1 2 3 | 2 3 4 – | 10 + 3 · 2 + 1 · 0 = 16 10 + 3 · 3 + 1 · 1 = 20 10 + 3 · 4 + 1 · 2 = 24 – |
Рассмотрим k = 2, когда плановый период содержит январь и февраль. У нас появляются дополнительные возможности для изменения объема выпуска изделий на каждом из этапов, с тем чтобы выйти на ненулевой уровень запасов y3 = 0.
Рекуррентное соотношение (4.15) примем вид
где ξ – оптимальное значение уровня запасов y2 на конец второго этапа, которому соответствует наименьшие суммарные затраты на производство и хранение продукции.
Ограничения на объем производства и уровень хранения очевидны:
Отобразим в таблице 3 все необходимые вычисления для февральского этапа
Таблица 3
| 0 | 1 | 2 | 3 | 4 | | |
0 | 5 – | 4 – | 3 – | 2 20 + 0 + 24 = 44 | 1 25 + 0 + 20 = 45 | 3 | 44 |
1 | 6 – | 5 – | 4 – | 3 – | 2 25 + 2 +24 =51 | 4 | 51 |
2 | 7 – | 6 – | 5 – | 4 – | 3 – | – | – |
Поясним содержание этой таблицы. Объем производства и уровень хранения определяются значениями x2 и y2 соответственно. В верхнем правом углу каждой клетки указаны уровни запасов на начало второго этапа, которые с помощью балансового уравнения вычисляются по формуле