Смекни!
smekni.com

Практическое применение теории игр (стр. 2 из 5)

На промышленных предприятиях теория игр может применяться для выбора оптимальных решений, например, при создании рациональных запасов сырья, материалов, полуфабрикатов, когда противоборствуют две тенденции: увеличение запасов, гарантирующих бесперебойную работу производства, сокращения запасов в целях минимизации затрат на их хранение. В сельском хозяйстве теория игр может применяться при решении таких экономических задач, как посева одной из возможных культур, урожай которой зависит от погоды, если известны цена единицы той или иной культуры и средняя урожайность каждой культуры в зависимости от погоды (например, будет ли лето засушливы, нормальным или дождливым); в этом случае одним выступает сельскохозяйственное предприятие, стремящееся обеспечить наибольший доход, а другим — природа.

Решение подобных задач требует полной определенности формулировании их условий (правил игры); установления количества игроков, выявления возможных стратегий игроков, возможных выигрышей (проигрыш понимается как отрицательный выигрыш). Важным элементом в условии игровых задач является стратегия, т.е. совокупность правил, которые в зависимости от ситуации в игре определяют однозначный выбор действий данного игрока. Если в процессе игры игрок применяет попеременно несколько стратегий, то такая стратегия называется смешанной, а ее элементы — чистыми стратегиями. Количество стратегий у каждого игрока может быть конечным и бесконечным, в зависимости от этого игры подразделяются на конечные и бесконечные.

Важными являются понятия оптимальной стратегии, цены игры, среднего выигрыша. Эти понятия находят отражение в определении решения игры: стратегии Р* и Q* первого и второго игрока соответственно называются их оптимальными стратегиями, а число V — ценой игры, если для любых стратегий Р первого игрока и любых стратегий Q выполняются неравенства:

где М (Р,Q) означает математическое ожидание выигрыши (средней выигрыш) первого игрока, если первым и вторым игроками избраны соответственно стратегии Р и Q.

Из неравенств следует, в частности, что V = M (P*,Q*),т.е. цена игры равна математическому ожиданию выигрыша первого игрока, если оба игрока изберут оптимальные для себя стратегии.

Одним из основных видов игр являются матричные игры, которыми называются парные игры с нулевой суммой (один игрок выигрывает столько, сколько проигрывает другой) при условии, что каждый игрок имеет конечное число стратегий. В этом случае парная игра формально задается матрицей А = (аij), элементы которой аij определяют выигрыш первого игрока (и соответственно проигрыш второго), если первый игрок выберет i-ю стратегию (i =

), а второй —j-ю стратегию (j =
). Матрица А называется матрицей игры, или платежной матрицей.

Существует ряд методов решения матричных игр. Если матрица игры имеет одну из размерностей, равную двум (у одного из игроков имеется только две стратегии), то решение игры может быть получено графически. Известно несколько методов приближенного решения матричной игры, например, метод Брауна. Во многих игровых задачах в сфере экономики неопределенность вызвана не сознательным противодействием противника, а недостаточной осведомленностью об условиях, в которых действуют стороны.

Когда одной из сторон выступает природа, когда неизвестно заранее погода, игры называются – играми с природой. В этих случаях строки матрицы игры соответствуют стратегии игрока, а столбцы — состояниям «природы». В ряде случаев при решении такой игры рассматривают матрицу рисков.

При решении игр с природой используется так же ряд критериев: критерий Сэвиджа, критерий Вальда, критерий Гурвица и др.

При максимальном критерии Вальда оптимальным считается та стратегия лица, принимающего решение, которая обеспечивает максимум минимального выигрыша; применяя этот критерий, ЛПР в большей степени ориентируется на наихудшие условия (этот критерий иногда называют критерием «крайнего пессимизма»).

Критерий минимаксного риска Сэвиджа предполагает, что оптимальной является та стратегия, при которой величина риска в наихудшем случае минимальна.

При использовании критерия «пессимизм — оптимизма” Гурвица ЛПР выбирает некоторый так называемый “коэффициент пессимизма» q; при q = 1 критерий Гурвица приводится к критерию Вальда («крайнего пессимизма»), а при критерию q=0 «крайнего оптимизма».

3.Модели сетевого планирования и управления

Сетевой моделью (другие названия: сетевой график, сеть) называется экономико-математическая модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи. Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет, во-первых, более четко выявить взаимосвязи этапов реализации проекта и, во-вторых, определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ. Таким образом, методы сетевого моделирования относятся к методам принятия оптимальных решений.

Математический аппарат сетевых моделей базируется на теории графов.

Графом называется совокупность двух конечных множеств: множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т. е. на каждом ребре задается направление, то граф называется ориентированным; в противном случае — неориентированным. Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь. Граф называется связным, если для любых двух его вершин существует путь, их соединяющий; в противном случае граф называется несвязным. В экономике чаще всего используются два вида графов: дерево и сеть. Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины; пути от исходной вершины к крайним вершинам называются ветвями. Сеть — это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида «сеть».

В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методам сетевого планирования и управления (СПУ).

Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п.

Основой СПУ является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.

Основные понятия СМ: событие, работа и путь. На рисунке графически представлена СМ, состоящая из 11 событий и 16 работ, продолжительность выполнения которых указана над работами.

Работа характеризует материальное действие, требующее использования ресурсов, или логическое, требующее взаимосвязи событий. При графическом представлении работа изображается стрелкой, которая соединяет два события. Она обозначается парой заключенных в скобки чисел (i, j), где i - номер события, из которого работа выходит, а j – номер события, в которое она входит. Работа не может начаться раньше, чем свершится событие, из которого она выходит. Каждая работа имеет определенную продолжительность t (i, j). Например, запись t (2,5) = 4 означает, что работа имеет продолжительность 5 единиц. К работам относятся такие процессы, которые не требуют ни ресурсов, ни времени выполнения. Они заключаются в установлении логической взаимосвязи работ и показывают, что одна из них непосредственно зависит от другой; такие работы называются фиктивными и на графике изображаются пунктирными стрелками.

Рис. Сетевая модель

Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени. Событие свершается в тот момент, когда оканчивается последняя из работ, входящая в него. События обозначаются одним числом и при графическом представлении СМ изображаются кружком (или иной геометрической фигурой), внутри которого проставляется его порядковый номер (i = 1, 2, ..., N). В СМ имеется начальное событие (с номером 1), из которого работы только выходят, и конечное событие (с номером N), в которое работы только входят.

Путь — это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины, например, в приведенной выше модели путями являются L1 = (1, 2, 3, 7, 10, 11), L2= (1, 2, 4, 6, 11) и др. Продолжительность пути определяется суммой продолжительностей составляющих его работ. Путь, имеющий максимальную длину, называют критическим и обозначают Lкр, а его продолжительность — tкр. Работы, принадлежащие критическому пути, называются критическими. Их несвоевременное выполнение ведет к срыву сроков всего комплекса работ.

СМ имеют ряд характеристик, которые позволяют определить степень напряженности выполнения отдельных работ, а также всего их комплекса и принять решение о перераспределении ресурсов. Однако перед расчетом СМ следует убедиться, что она удовлетворяет следующим основным требованиям: