Это эквивалентно так называемому условию порядка: для того чтобы уравнение в системе из т линейных структурных уравнений было идентифицируемо, необходимо, чтобы в нем отсутствовало по меньшей мере т — 1 переменных из т + к переменных, встречающихся в модели. Обозначим через т число эндогенных переменных в модели, к — число предопределенных переменных, h— число эндогенных переменных в рассматриваемом уравнении, g— число предопределенных переменных в рассматриваемом уравнении. Тогда условие порядка может быть записано в форме т+к — h— g > m— 1 или к — g > h— 1.
Структурное уравнение называется идентифицируемым, если оно удовлетворяет условию порядка; в случае точного равенства уравнение называется точно идентифицируемым, при строгом неравенстве — сверхидентифицируемым.
Следующим этапом является оценивание структурных параметров. Для структурных моделей, построенных на основе p-коэффициентов, оценка pijпроизводится не методом наименьших квадратов, а с помощью такого приема. Запишем уравнение (3) следующим образом: или иначе (9)
Используем коэффициенты корреляции между зависимой переменной и каждой из объясняющих переменных: (10)
где n- число наблюдений.
Подставляя в (10) вместо xiправую часть выражения (10), получим: (11)
В этом преобразовании учтено, что корреляция ui, с хj по определению равна нулю. Если учесть, что rij=1, то соотношение (11), называемое основной теоремой путевого анализа, можно записать так: (12)
Здесь j указывает на объясняющую переменную, связь которой с объясняемой переменной i раскрывается в структурной модели, к пробегает по подмножеству всех переменных, непосредственно влияющих на i-ю переменную (на графе эти вершины связаны с вершиной i дугами). Соотношение (12) справедливо для любой рекурсивной системы.
Путевой анализ позволяет произвести декомпозицию корреляции rij. Введем понятия «полная (совокупная) связь», «совокупное влияние», «прямое влияние», «косвенное влияние». Если коэффициент корреляции нулевого порядка rijрассматривать как измеритель полной связи двух переменных, то мерой совокупного влияния j-й переменной на i-ю переменную (qij) будет являться ее часть, не зависящая ни от общих для них переменных — причин, ни от корреляции между общими для j-й и i-й переменных причинами (компоненты ложной корреляции), ни от наличия не анализируемой в модели априорной корреляции предопределенных переменных — входов.
Таким образом, мы можем разложить полную связь двух переменных на четыре составляющие с учетом постулируемой в модели асимметрии воздействия: на совокупное влияние (причинное влияние) j-й переменной на i-ю, на две компоненты, измеряющие эффект ложной корреляции, и на компоненту, еще не имеющую общепринятого названия. В свою очередь, совокупное влияние может быть разложено на две составляющие с учетом того, каким образом оно осуществляется — непосредственно или через другие переменные.
Прямое влияние одной переменной на другую измеряется коэффициентом pij ;в этом случае в цепи между объясняющей и объясняемой переменными нет промежуточных звеньев. Косвенное влияние — это влияние тех составляющих совокупного влияния одной переменной на другую, которое образуется при учете эффекта передачи воздействия через посредство переменных, специфицированных в модели как промежуточные звенья в причинной цепи, связывающей изучаемые переменные. Поскольку строение совокупного влияния всецело зависит от постулируемой причинной структуры отношений между переменными, то и все введенные выше понятия имеют смысл только лишь по отношению к причинной модели с заданным графом связей.
3. Процедура Саймона-Блейлока
Структурные причинные модели в эконометрике и социологии соединяют теорию объекта с эмпирическими данными на основе графа связей. Структурные модели формализуют гипотезы о причинных отношениях. Встает задача выбора гипотез, обозначаемая иногда в эконометрической и социологической литературе как проблема каузального вывода. Х.Блейлок, изучая этот вопрос как часть общего вопроса о средствах построения социологических теорий, предложил формальный прием, основанный на идеях Г.Саймона о ложной корреляции и каузальной упорядоченности, иногда называемый процедурой Саймона — Блейлока.
Формальное содержание этого подхода заключается в гипотезе о полностью специфицированной линейной рекурсивной причинной модели, оценке ее параметров, а затем использовании этих значений для воспроизведения эмпирической корреляционной матрицы. Основная идея процедуры — это положение о том, что модель, которая не воспроизводит эмпирических корреляций, должна быть отвергнута.
Очевидна целесообразность использования процедуры Саймона — Блейлока в двух случаях. Во-первых, когда известен причинный приоритет среди переменных. Если в этом случае имеются две гипотезы, постулирующие различные причинные цепи (структуры графа), то, используя процедуру Саймона - Блейлока, можно воссоздать эмпирические корреляции и отвергнуть ту каузальную цепь, где рассогласование слишком большое. Таким образом, мы можем сравнивать теории.
Второй ситуацией является случай с неизвестным каузальным приоритетом среди переменных. Допустим, что мы имеем набор переменных, для которых не известен каузальный порядок причина-следствие, и имеются две гипотезы, каждая по-своему устанавливающая его, постулируя отсутствие тех или иных возможных отношений. Описываемый подход может быть применен как для сравнения этих теорий, так и для их отбрасывания. Заметим, что в процедуре сравнения одна модель-гипотеза может оказаться лучше другой, но никогда — правильной. Более того, если одна из гипотез близка к тому, чтобы описываться полной рекурсивной системой, то обычно она работает, лучше воспроизводя корреляционную матрицу, и, естественно, будет выбираться как более удачная, даже если она весьма далека от истины.
Процедура Саймона — Блейлока является формальным приемом, создающим базис для отвергания гипотез, но никоим образом не представляет собой процедуру для создания новых теорий.
Другим известным приемом является вычеркивание связей в чрезмерно связанном графе с целью изучения поведения системы и ее элементов в новых условиях. Устойчивость системы может означать верность гипотезы. Решение об уничтожении той или иной связи модели может быть принято или на основании критерия статистической значимости, или на основании произвольно установленного порогового критерия величины коэффициента причинного влияния. Проверкой правильности гипотез и корректности модели должно служить ее подтверждение при испытаниях на контрольных данных.
Использование p-анализа в социально-экономических исследованиях связано с рядом трудностей. Прежде всего не всегда можно считать, что линейная зависимость в состоянии удовлетворительно отразить все разнообразие причинно-следственных связей в реальных структурах. Кроме того, следует учитывать, что р-анализ разработан для количественных переменных. Структурные модели и путевой анализ иллюстрируют единство теоретического (качественного) и формально-математического (количественного) подходов. Значимость результатов анализа определяется в первую очередь правильностью построения логического каркаса структурной модели — максимально связанного графа связей, изоморфной математической модели в виде системы уравнений.
Заключение
В данном реферате был рассмотрен метод Райта, который нашёл широкое применение в биометрии, построении социологических причинных моделей.
Путевой анализ можно разделить на несколько этапов.
Первым этапом путевого анализа является идентификация уравнений системы. Под идентификацией понимается структурная спецификация модели, призванная выделить одну-единственную итоговую структурную модель анализируемых данных.
Следующим этапом является оценивание структурных параметров.
Структурные причинные модели в эконометрике и социологии соединяют теорию объекта с эмпирическими данными на основе графа связей. Структурные модели формализуют гипотезы о причинных отношениях. Встает задача выбора гипотез, обозначаемая иногда в эконометрической и социологической литературе как проблема каузального вывода. Х.Блейлок, изучая этот вопрос как часть общего вопроса о средствах построения социологических теорий, предложил формальный прием, основанный на идеях Г.Саймона о ложной корреляции и каузальной упорядоченности, иногда называемый процедурой Саймона — Блейлока.
Формальное содержание этого подхода заключается в гипотезе о полностью специфицированной линейной рекурсивной причинной модели, оценке ее параметров, а затем использовании этих значений для воспроизведения эмпирической корреляционной матрицы. Основная идея процедуры — это положение о том, что модель, которая не воспроизводит эмпирических корреляций, должна быть отвергнута.
Путевой анализ Райта позволил прояснить проблему ложной корреляции, которой занимались многие статистики.
Используемая литература
1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 1998
2. Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы.- М.: Финансы и статистика,1998
3. Елисеева И.И.. –М: Финансы и статистика,2001
4. Ферстер Э., Ренц Б. Методы корреляционного и регрессионного анализа.- М.: Финансы и статистика, 1983